
1/27

9N Fundamental Theorems for Free M:
Logical Relations & Parametricity

for Substructural Type Theory and Beyond

T Corinthia Beatrix Aberlé (she/her) U

February 14, 2025

2/27

What is a Logical Relation?

Logical relations are a powerful proof technique that can be used to
prove properties of type systems such as normalization, canonicity, and

parametricity, that typically evade straightforward proof by induction.

But what is a logical relation?

The usual way of introducing logical relations is by example, with the term
“logical relations” being applied to anything that sufficiently resembles other
logical relations arguments, rather than having a precise definition.

This lack of precision makes for difficulty in extending logical relations
arguments to novel type systems, since there is not a clear standard by which
to judge whether the relations one defines are the “right” ones.

In this talk, I will outline some of my own recent work on developing logical
relations to prove parametricity theorems for substructural type systems,
using this as a jumping-off point to discuss a more general categorical recipe
for logical relations, that can be used to derive these and other examples.

2/27

What is a Logical Relation?

Logical relations are a powerful proof technique that can be used to
prove properties of type systems such as normalization, canonicity, and

parametricity, that typically evade straightforward proof by induction.

But what is a logical relation?

The usual way of introducing logical relations is by example, with the term
“logical relations” being applied to anything that sufficiently resembles other
logical relations arguments, rather than having a precise definition.

This lack of precision makes for difficulty in extending logical relations
arguments to novel type systems, since there is not a clear standard by which
to judge whether the relations one defines are the “right” ones.

In this talk, I will outline some of my own recent work on developing logical
relations to prove parametricity theorems for substructural type systems,
using this as a jumping-off point to discuss a more general categorical recipe
for logical relations, that can be used to derive these and other examples.

2/27

What is a Logical Relation?

Logical relations are a powerful proof technique that can be used to
prove properties of type systems such as normalization, canonicity, and

parametricity, that typically evade straightforward proof by induction.

But what is a logical relation?

The usual way of introducing logical relations is by example, with the term
“logical relations” being applied to anything that sufficiently resembles other
logical relations arguments, rather than having a precise definition.

This lack of precision makes for difficulty in extending logical relations
arguments to novel type systems, since there is not a clear standard by which
to judge whether the relations one defines are the “right” ones.

In this talk, I will outline some of my own recent work on developing logical
relations to prove parametricity theorems for substructural type systems,
using this as a jumping-off point to discuss a more general categorical recipe
for logical relations, that can be used to derive these and other examples.

2/27

What is a Logical Relation?

Logical relations are a powerful proof technique that can be used to
prove properties of type systems such as normalization, canonicity, and

parametricity, that typically evade straightforward proof by induction.

But what is a logical relation?

The usual way of introducing logical relations is by example, with the term
“logical relations” being applied to anything that sufficiently resembles other
logical relations arguments, rather than having a precise definition.

This lack of precision makes for difficulty in extending logical relations
arguments to novel type systems, since there is not a clear standard by which
to judge whether the relations one defines are the “right” ones.

In this talk, I will outline some of my own recent work on developing logical
relations to prove parametricity theorems for substructural type systems,
using this as a jumping-off point to discuss a more general categorical recipe
for logical relations, that can be used to derive these and other examples.

2/27

What is a Logical Relation?

Logical relations are a powerful proof technique that can be used to
prove properties of type systems such as normalization, canonicity, and

parametricity, that typically evade straightforward proof by induction.

But what is a logical relation?

The usual way of introducing logical relations is by example, with the term
“logical relations” being applied to anything that sufficiently resembles other
logical relations arguments, rather than having a precise definition.

This lack of precision makes for difficulty in extending logical relations
arguments to novel type systems, since there is not a clear standard by which
to judge whether the relations one defines are the “right” ones.

In this talk, I will outline some of my own recent work on developing logical
relations to prove parametricity theorems for substructural type systems,
using this as a jumping-off point to discuss a more general categorical recipe
for logical relations, that can be used to derive these and other examples.

3/27

Simply-Typed λ-Calculus

Simply-Typed λ-Calculus (STLC) is the internal language of Cartesian
Closed Categories (CCCs), i.e. there is an equivalence of categories:

STLC CCC
Syn

L
≃

where

• STLC is the category of theories in STLC (aka λ-theories) and
translations between them.

• CCC is the category of Cartesian Closed Categories and functors that
(strictly) preserve finite products and exponentials between them.

• Syn constructs a “syntactic category” for each theory in STLC.
• L defines a theory in STLC—the internal language of C—for each
Cartesian Closed Category C.

3/27

Simply-Typed λ-Calculus

Simply-Typed λ-Calculus (STLC) is the internal language of Cartesian
Closed Categories (CCCs), i.e. there is an equivalence of categories:

STLC CCC
Syn

L
≃

where
• STLC is the category of theories in STLC (aka λ-theories) and
translations between them.

• CCC is the category of Cartesian Closed Categories and functors that
(strictly) preserve finite products and exponentials between them.

• Syn constructs a “syntactic category” for each theory in STLC.
• L defines a theory in STLC—the internal language of C—for each
Cartesian Closed Category C.

3/27

Simply-Typed λ-Calculus

Simply-Typed λ-Calculus (STLC) is the internal language of Cartesian
Closed Categories (CCCs), i.e. there is an equivalence of categories:

STLC CCC
Syn

L
≃

where
• STLC is the category of theories in STLC (aka λ-theories) and
translations between them.

• CCC is the category of Cartesian Closed Categories and functors that
(strictly) preserve finite products and exponentials between them.

• Syn constructs a “syntactic category” for each theory in STLC.
• L defines a theory in STLC—the internal language of C—for each
Cartesian Closed Category C.

3/27

Simply-Typed λ-Calculus

Simply-Typed λ-Calculus (STLC) is the internal language of Cartesian
Closed Categories (CCCs), i.e. there is an equivalence of categories:

STLC CCC
Syn

L
≃

where
• STLC is the category of theories in STLC (aka λ-theories) and
translations between them.

• CCC is the category of Cartesian Closed Categories and functors that
(strictly) preserve finite products and exponentials between them.

• Syn constructs a “syntactic category” for each theory in STLC.

• L defines a theory in STLC—the internal language of C—for each
Cartesian Closed Category C.

3/27

Simply-Typed λ-Calculus

Simply-Typed λ-Calculus (STLC) is the internal language of Cartesian
Closed Categories (CCCs), i.e. there is an equivalence of categories:

STLC CCC
Syn

L
≃

where
• STLC is the category of theories in STLC (aka λ-theories) and
translations between them.

• CCC is the category of Cartesian Closed Categories and functors that
(strictly) preserve finite products and exponentials between them.

• Syn constructs a “syntactic category” for each theory in STLC.
• L defines a theory in STLC—the internal language of C—for each
Cartesian Closed Category C.

4/27

Natural Number Objects & System T

A natural number object in a CCC C, if one exists, is the universal object
ℕ ∈ C equipped with morphisms

z : 1 → ℕ and s : ℕ → ℕ

i.e. such that for any object X equipped with 𝑥 : 1 → X and 𝑓 : X → X there is
a unique morphism rec(𝑥, 𝑓) : ℕ → X that makes the following commute:

1 ℕ ℕ

X X

z

𝑥

s

rec(𝑥,𝑓) rec(𝑥,𝑓)

𝑓

System T (Gödel, 1958) adds to STLC a type of natural numbers ℕ, which
makes Syn(SysT) the initial object in the category CCCℕ of CCCs equipped
with natural number objects and functors between them that (strictly)
preserve finite products, exponentials, and natural number objects.

4/27

Natural Number Objects & System T

A natural number object in a CCC C, if one exists, is the universal object
ℕ ∈ C equipped with morphisms

z : 1 → ℕ and s : ℕ → ℕ

i.e. such that for any object X equipped with 𝑥 : 1 → X and 𝑓 : X → X there is
a unique morphism rec(𝑥, 𝑓) : ℕ → X that makes the following commute:

1 ℕ ℕ

X X

z

𝑥

s

rec(𝑥,𝑓) rec(𝑥,𝑓)

𝑓

System T (Gödel, 1958) adds to STLC a type of natural numbers ℕ, which
makes Syn(SysT) the initial object in the category CCCℕ of CCCs equipped
with natural number objects and functors between them that (strictly)
preserve finite products, exponentials, and natural number objects.

4/27

Natural Number Objects & System T

A natural number object in a CCC C, if one exists, is the universal object
ℕ ∈ C equipped with morphisms

z : 1 → ℕ and s : ℕ → ℕ

i.e. such that for any object X equipped with 𝑥 : 1 → X and 𝑓 : X → X there is
a unique morphism rec(𝑥, 𝑓) : ℕ → X that makes the following commute:

1 ℕ ℕ

X X

z

𝑥

s

rec(𝑥,𝑓) rec(𝑥,𝑓)

𝑓

System T (Gödel, 1958) adds to STLC a type of natural numbers ℕ, which
makes Syn(SysT) the initial object in the category CCCℕ of CCCs equipped
with natural number objects and functors between them that (strictly)
preserve finite products, exponentials, and natural number objects.

5/27

Canonicity for System T

For each (metatheoretic) natural number 𝑚, let 𝑚 be defined by

0 = z and 𝑛 + 1 = s(𝑛)

Theorem (Canonicity): every closed term 𝑛 : ℕ in System T is judgmentally
equal to 𝑚 for some natural number 𝑚.
Proof: by a logical relations argument.

5/27

Canonicity for System T

For each (metatheoretic) natural number 𝑚, let 𝑚 be defined by

0 = z and 𝑛 + 1 = s(𝑛)

Theorem (Canonicity): every closed term 𝑛 : ℕ in System T is judgmentally
equal to 𝑚 for some natural number 𝑚.

Proof: by a logical relations argument.

5/27

Canonicity for System T

For each (metatheoretic) natural number 𝑚, let 𝑚 be defined by

0 = z and 𝑛 + 1 = s(𝑛)

Theorem (Canonicity): every closed term 𝑛 : ℕ in System T is judgmentally
equal to 𝑚 for some natural number 𝑚.
Proof: by a logical relations argument.

6/27

Logical Relations for System T

For each type τ in System T, let JτK be the set of closed terms of type τ,
quotiented up to judgmental equality. Equivalently, this is HomSyn(SysT) (1, τ).

Then for each type τ in System T, define a predicate ℙτ ⊆ JτK, as follows:

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩
ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))
ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

Fundamental Theorem (FTLR): for every open term Γ ⊢ 𝑎 : A in System T

∀γ : Γ, if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem: for any
term 𝑛 : ℕ, we have ℙℕ (𝑛), i.e. 𝑛 ≡ 𝑚 for some 𝑚.

6/27

Logical Relations for System T

For each type τ in System T, let JτK be the set of closed terms of type τ,
quotiented up to judgmental equality. Equivalently, this is HomSyn(SysT) (1, τ).
Then for each type τ in System T, define a predicate ℙτ ⊆ JτK, as follows:

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩
ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))
ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

Fundamental Theorem (FTLR): for every open term Γ ⊢ 𝑎 : A in System T

∀γ : Γ, if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem: for any
term 𝑛 : ℕ, we have ℙℕ (𝑛), i.e. 𝑛 ≡ 𝑚 for some 𝑚.

6/27

Logical Relations for System T

For each type τ in System T, let JτK be the set of closed terms of type τ,
quotiented up to judgmental equality. Equivalently, this is HomSyn(SysT) (1, τ).
Then for each type τ in System T, define a predicate ℙτ ⊆ JτK, as follows:

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩

ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))
ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

Fundamental Theorem (FTLR): for every open term Γ ⊢ 𝑎 : A in System T

∀γ : Γ, if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem: for any
term 𝑛 : ℕ, we have ℙℕ (𝑛), i.e. 𝑛 ≡ 𝑚 for some 𝑚.

6/27

Logical Relations for System T

For each type τ in System T, let JτK be the set of closed terms of type τ,
quotiented up to judgmental equality. Equivalently, this is HomSyn(SysT) (1, τ).
Then for each type τ in System T, define a predicate ℙτ ⊆ JτK, as follows:

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩
ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))
ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

Fundamental Theorem (FTLR): for every open term Γ ⊢ 𝑎 : A in System T

∀γ : Γ, if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem: for any
term 𝑛 : ℕ, we have ℙℕ (𝑛), i.e. 𝑛 ≡ 𝑚 for some 𝑚.

6/27

Logical Relations for System T

For each type τ in System T, let JτK be the set of closed terms of type τ,
quotiented up to judgmental equality. Equivalently, this is HomSyn(SysT) (1, τ).
Then for each type τ in System T, define a predicate ℙτ ⊆ JτK, as follows:

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩
ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))

ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

Fundamental Theorem (FTLR): for every open term Γ ⊢ 𝑎 : A in System T

∀γ : Γ, if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem: for any
term 𝑛 : ℕ, we have ℙℕ (𝑛), i.e. 𝑛 ≡ 𝑚 for some 𝑚.

6/27

Logical Relations for System T

For each type τ in System T, let JτK be the set of closed terms of type τ,
quotiented up to judgmental equality. Equivalently, this is HomSyn(SysT) (1, τ).
Then for each type τ in System T, define a predicate ℙτ ⊆ JτK, as follows:

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩
ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))
ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

Fundamental Theorem (FTLR): for every open term Γ ⊢ 𝑎 : A in System T

∀γ : Γ, if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem: for any
term 𝑛 : ℕ, we have ℙℕ (𝑛), i.e. 𝑛 ≡ 𝑚 for some 𝑚.

6/27

Logical Relations for System T

For each type τ in System T, let JτK be the set of closed terms of type τ,
quotiented up to judgmental equality. Equivalently, this is HomSyn(SysT) (1, τ).
Then for each type τ in System T, define a predicate ℙτ ⊆ JτK, as follows:

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩
ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))
ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

Fundamental Theorem (FTLR): for every open term Γ ⊢ 𝑎 : A in System T

∀γ : Γ, if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem: for any
term 𝑛 : ℕ, we have ℙℕ (𝑛), i.e. 𝑛 ≡ 𝑚 for some 𝑚.

6/27

Logical Relations for System T

For each type τ in System T, let JτK be the set of closed terms of type τ,
quotiented up to judgmental equality. Equivalently, this is HomSyn(SysT) (1, τ).
Then for each type τ in System T, define a predicate ℙτ ⊆ JτK, as follows:

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩
ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))
ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

Fundamental Theorem (FTLR): for every open term Γ ⊢ 𝑎 : A in System T

∀γ : Γ, if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem: for any
term 𝑛 : ℕ, we have ℙℕ (𝑛), i.e. 𝑛 ≡ 𝑚 for some 𝑚.

6/27

Logical Relations for System T

For each type τ in System T, let JτK be the set of closed terms of type τ,
quotiented up to judgmental equality. Equivalently, this is HomSyn(SysT) (1, τ).
Then for each type τ in System T, define a predicate ℙτ ⊆ JτK, as follows:

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩
ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))
ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

Fundamental Theorem (FTLR): for every open term Γ ⊢ 𝑎 : A in System T

∀γ : Γ, if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem: for any
term 𝑛 : ℕ, we have ℙℕ (𝑛), i.e. 𝑛 ≡ 𝑚 for some 𝑚.

7/27

Polymorphism
Consider the theory λ[X] of a type X in STLC (i.e. the theory defined by a
single atomic type X, with no constants or equations.) This theory has the
following universal property in STLC:

For any λ-theory 𝕋 and any type A in 𝕋 , there is a unique translation

(−)[A/X] : λ[X] → 𝕋

such that X[A/X] = A.

We call a term 𝑓 : A[X] → B[X] in λ[X] a (unary) polymorphic function, since
for any type C in any λ-theory 𝕋 , we can obtain a function

𝑓 [A/X] : A[C] → B[C]

Intuitively, Polymorphic functions can’t inspect the types over which they are
defined and so must behave uniformly for all types at which they are
instantiated. But how to make this idea precise?

Reynolds (1983): Polymorphic functions should preserve all
predicates/relations definable on types.

7/27

Polymorphism
Consider the theory λ[X] of a type X in STLC (i.e. the theory defined by a
single atomic type X, with no constants or equations.) This theory has the
following universal property in STLC:

For any λ-theory 𝕋 and any type A in 𝕋 , there is a unique translation

(−)[A/X] : λ[X] → 𝕋

such that X[A/X] = A.

We call a term 𝑓 : A[X] → B[X] in λ[X] a (unary) polymorphic function, since
for any type C in any λ-theory 𝕋 , we can obtain a function

𝑓 [A/X] : A[C] → B[C]

Intuitively, Polymorphic functions can’t inspect the types over which they are
defined and so must behave uniformly for all types at which they are
instantiated. But how to make this idea precise?

Reynolds (1983): Polymorphic functions should preserve all
predicates/relations definable on types.

7/27

Polymorphism
Consider the theory λ[X] of a type X in STLC (i.e. the theory defined by a
single atomic type X, with no constants or equations.) This theory has the
following universal property in STLC:

For any λ-theory 𝕋 and any type A in 𝕋 , there is a unique translation

(−)[A/X] : λ[X] → 𝕋

such that X[A/X] = A.

We call a term 𝑓 : A[X] → B[X] in λ[X] a (unary) polymorphic function, since
for any type C in any λ-theory 𝕋 , we can obtain a function

𝑓 [A/X] : A[C] → B[C]

Intuitively, Polymorphic functions can’t inspect the types over which they are
defined and so must behave uniformly for all types at which they are
instantiated. But how to make this idea precise?

Reynolds (1983): Polymorphic functions should preserve all
predicates/relations definable on types.

7/27

Polymorphism
Consider the theory λ[X] of a type X in STLC (i.e. the theory defined by a
single atomic type X, with no constants or equations.) This theory has the
following universal property in STLC:

For any λ-theory 𝕋 and any type A in 𝕋 , there is a unique translation

(−)[A/X] : λ[X] → 𝕋

such that X[A/X] = A.

We call a term 𝑓 : A[X] → B[X] in λ[X] a (unary) polymorphic function, since
for any type C in any λ-theory 𝕋 , we can obtain a function

𝑓 [A/X] : A[C] → B[C]

Intuitively, Polymorphic functions can’t inspect the types over which they are
defined and so must behave uniformly for all types at which they are
instantiated. But how to make this idea precise?

Reynolds (1983): Polymorphic functions should preserve all
predicates/relations definable on types.

7/27

Polymorphism
Consider the theory λ[X] of a type X in STLC (i.e. the theory defined by a
single atomic type X, with no constants or equations.) This theory has the
following universal property in STLC:

For any λ-theory 𝕋 and any type A in 𝕋 , there is a unique translation

(−)[A/X] : λ[X] → 𝕋

such that X[A/X] = A.

We call a term 𝑓 : A[X] → B[X] in λ[X] a (unary) polymorphic function, since
for any type C in any λ-theory 𝕋 , we can obtain a function

𝑓 [A/X] : A[C] → B[C]

Intuitively, Polymorphic functions can’t inspect the types over which they are
defined and so must behave uniformly for all types at which they are
instantiated. But how to make this idea precise?

Reynolds (1983): Polymorphic functions should preserve all
predicates/relations definable on types.

8/27

Parametricity

Let 𝕋 be a λ-theory and C a type in 𝕋 . Let P ⊆ JCK be an arbitrary predicate
on closed terms of type C in 𝕋 .

For each type τ[X] in λ[X] , define a predicate ℙτ ⊆ Jτ[C]K as follows:

ℙX (𝑥) ⇐⇒ P(𝑥)

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩

ℙA[X]×B[X] (𝑝) ⇐⇒ ℙA[X] (π1 (𝑝)) and ℙB[X] (π2 (𝑝))

ℙA[X]→B[X] (𝑓) ⇐⇒ ∀𝑎 : A[C]. ℙA[X] (𝑎) =⇒ ℙB [X] (𝑓 (𝑎))

FTLR: for any open term Γ[X] ⊢ 𝑎 : A[X] in λ[X]

∀γ : Γ[C] , if ℙΓ[X] (γ) then ℙA[X] (𝑎[C/X] [γ/Γ])

Proof: induction on the derivation of Γ[X] ⊢ 𝑎 : A[X]

8/27

Parametricity

Let 𝕋 be a λ-theory and C a type in 𝕋 . Let P ⊆ JCK be an arbitrary predicate
on closed terms of type C in 𝕋 .

For each type τ[X] in λ[X] , define a predicate ℙτ ⊆ Jτ[C]K as follows:

ℙX (𝑥) ⇐⇒ P(𝑥)

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩

ℙA[X]×B[X] (𝑝) ⇐⇒ ℙA[X] (π1 (𝑝)) and ℙB[X] (π2 (𝑝))

ℙA[X]→B[X] (𝑓) ⇐⇒ ∀𝑎 : A[C]. ℙA[X] (𝑎) =⇒ ℙB [X] (𝑓 (𝑎))

FTLR: for any open term Γ[X] ⊢ 𝑎 : A[X] in λ[X]

∀γ : Γ[C] , if ℙΓ[X] (γ) then ℙA[X] (𝑎[C/X] [γ/Γ])

Proof: induction on the derivation of Γ[X] ⊢ 𝑎 : A[X]

8/27

Parametricity

Let 𝕋 be a λ-theory and C a type in 𝕋 . Let P ⊆ JCK be an arbitrary predicate
on closed terms of type C in 𝕋 .

For each type τ[X] in λ[X] , define a predicate ℙτ ⊆ Jτ[C]K as follows:

ℙX (𝑥) ⇐⇒ P(𝑥)

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩

ℙA[X]×B[X] (𝑝) ⇐⇒ ℙA[X] (π1 (𝑝)) and ℙB[X] (π2 (𝑝))

ℙA[X]→B[X] (𝑓) ⇐⇒ ∀𝑎 : A[C]. ℙA[X] (𝑎) =⇒ ℙB [X] (𝑓 (𝑎))

FTLR: for any open term Γ[X] ⊢ 𝑎 : A[X] in λ[X]

∀γ : Γ[C] , if ℙΓ[X] (γ) then ℙA[X] (𝑎[C/X] [γ/Γ])

Proof: induction on the derivation of Γ[X] ⊢ 𝑎 : A[X]

8/27

Parametricity

Let 𝕋 be a λ-theory and C a type in 𝕋 . Let P ⊆ JCK be an arbitrary predicate
on closed terms of type C in 𝕋 .

For each type τ[X] in λ[X] , define a predicate ℙτ ⊆ Jτ[C]K as follows:

ℙX (𝑥) ⇐⇒ P(𝑥)

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩

ℙA[X]×B[X] (𝑝) ⇐⇒ ℙA[X] (π1 (𝑝)) and ℙB[X] (π2 (𝑝))

ℙA[X]→B[X] (𝑓) ⇐⇒ ∀𝑎 : A[C]. ℙA[X] (𝑎) =⇒ ℙB [X] (𝑓 (𝑎))

FTLR: for any open term Γ[X] ⊢ 𝑎 : A[X] in λ[X]

∀γ : Γ[C] , if ℙΓ[X] (γ) then ℙA[X] (𝑎[C/X] [γ/Γ])

Proof: induction on the derivation of Γ[X] ⊢ 𝑎 : A[X]

8/27

Parametricity

Let 𝕋 be a λ-theory and C a type in 𝕋 . Let P ⊆ JCK be an arbitrary predicate
on closed terms of type C in 𝕋 .

For each type τ[X] in λ[X] , define a predicate ℙτ ⊆ Jτ[C]K as follows:

ℙX (𝑥) ⇐⇒ P(𝑥)

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩

ℙA[X]×B[X] (𝑝) ⇐⇒ ℙA[X] (π1 (𝑝)) and ℙB[X] (π2 (𝑝))

ℙA[X]→B[X] (𝑓) ⇐⇒ ∀𝑎 : A[C]. ℙA[X] (𝑎) =⇒ ℙB [X] (𝑓 (𝑎))

FTLR: for any open term Γ[X] ⊢ 𝑎 : A[X] in λ[X]

∀γ : Γ[C] , if ℙΓ[X] (γ) then ℙA[X] (𝑎[C/X] [γ/Γ])

Proof: induction on the derivation of Γ[X] ⊢ 𝑎 : A[X]

8/27

Parametricity

Let 𝕋 be a λ-theory and C a type in 𝕋 . Let P ⊆ JCK be an arbitrary predicate
on closed terms of type C in 𝕋 .

For each type τ[X] in λ[X] , define a predicate ℙτ ⊆ Jτ[C]K as follows:

ℙX (𝑥) ⇐⇒ P(𝑥)

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩

ℙA[X]×B[X] (𝑝) ⇐⇒ ℙA[X] (π1 (𝑝)) and ℙB[X] (π2 (𝑝))

ℙA[X]→B[X] (𝑓) ⇐⇒ ∀𝑎 : A[C]. ℙA[X] (𝑎) =⇒ ℙB [X] (𝑓 (𝑎))

FTLR: for any open term Γ[X] ⊢ 𝑎 : A[X] in λ[X]

∀γ : Γ[C] , if ℙΓ[X] (γ) then ℙA[X] (𝑎[C/X] [γ/Γ])

Proof: induction on the derivation of Γ[X] ⊢ 𝑎 : A[X]

8/27

Parametricity

Let 𝕋 be a λ-theory and C a type in 𝕋 . Let P ⊆ JCK be an arbitrary predicate
on closed terms of type C in 𝕋 .

For each type τ[X] in λ[X] , define a predicate ℙτ ⊆ Jτ[C]K as follows:

ℙX (𝑥) ⇐⇒ P(𝑥)

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩

ℙA[X]×B[X] (𝑝) ⇐⇒ ℙA[X] (π1 (𝑝)) and ℙB[X] (π2 (𝑝))

ℙA[X]→B[X] (𝑓) ⇐⇒ ∀𝑎 : A[C]. ℙA[X] (𝑎) =⇒ ℙB [X] (𝑓 (𝑎))

FTLR: for any open term Γ[X] ⊢ 𝑎 : A[X] in λ[X]

∀γ : Γ[C] , if ℙΓ[X] (γ) then ℙA[X] (𝑎[C/X] [γ/Γ])

Proof: induction on the derivation of Γ[X] ⊢ 𝑎 : A[X]

8/27

Parametricity

Let 𝕋 be a λ-theory and C a type in 𝕋 . Let P ⊆ JCK be an arbitrary predicate
on closed terms of type C in 𝕋 .

For each type τ[X] in λ[X] , define a predicate ℙτ ⊆ Jτ[C]K as follows:

ℙX (𝑥) ⇐⇒ P(𝑥)

ℙ1 (𝑢) ⇐⇒ 𝑢 ≡ ⟨⟩

ℙA[X]×B[X] (𝑝) ⇐⇒ ℙA[X] (π1 (𝑝)) and ℙB[X] (π2 (𝑝))

ℙA[X]→B[X] (𝑓) ⇐⇒ ∀𝑎 : A[C]. ℙA[X] (𝑎) =⇒ ℙB [X] (𝑓 (𝑎))

FTLR: for any open term Γ[X] ⊢ 𝑎 : A[X] in λ[X]

∀γ : Γ[C] , if ℙΓ[X] (γ) then ℙA[X] (𝑎[C/X] [γ/Γ])

Proof: induction on the derivation of Γ[X] ⊢ 𝑎 : A[X]

9/27

Consequences of Parametricity, part 1

The Old Chestnut: every polymorphic function α : X → X in λ[X] is
extensionally equivalent to the identity function.

Proof:

• By parametricity, we know that for any type C in any theory 𝕋 , and any
predicate P ⊆ JCK, we have

∀𝑥 : C, P(𝑥) =⇒ P(α[C/X] (𝑥))

• Hence for any 𝑐 : C, let P = {J𝑐K}. By construction we have

𝑥 ∈ P ⇐⇒ 𝑥 ≡ 𝑐

• It follows that
α[C/X] (𝑐) ≡ 𝑐

for all 𝑐 : C.

9/27

Consequences of Parametricity, part 1

The Old Chestnut: every polymorphic function α : X → X in λ[X] is
extensionally equivalent to the identity function.

Proof:

• By parametricity, we know that for any type C in any theory 𝕋 , and any
predicate P ⊆ JCK, we have

∀𝑥 : C, P(𝑥) =⇒ P(α[C/X] (𝑥))

• Hence for any 𝑐 : C, let P = {J𝑐K}. By construction we have

𝑥 ∈ P ⇐⇒ 𝑥 ≡ 𝑐

• It follows that
α[C/X] (𝑐) ≡ 𝑐

for all 𝑐 : C.

9/27

Consequences of Parametricity, part 1

The Old Chestnut: every polymorphic function α : X → X in λ[X] is
extensionally equivalent to the identity function.

Proof:
• By parametricity, we know that for any type C in any theory 𝕋 , and any
predicate P ⊆ JCK, we have

∀𝑥 : C, P(𝑥) =⇒ P(α[C/X] (𝑥))

• Hence for any 𝑐 : C, let P = {J𝑐K}. By construction we have

𝑥 ∈ P ⇐⇒ 𝑥 ≡ 𝑐

• It follows that
α[C/X] (𝑐) ≡ 𝑐

for all 𝑐 : C.

9/27

Consequences of Parametricity, part 1

The Old Chestnut: every polymorphic function α : X → X in λ[X] is
extensionally equivalent to the identity function.

Proof:
• By parametricity, we know that for any type C in any theory 𝕋 , and any
predicate P ⊆ JCK, we have

∀𝑥 : C, P(𝑥) =⇒ P(α[C/X] (𝑥))

• Hence for any 𝑐 : C, let P = {J𝑐K}. By construction we have

𝑥 ∈ P ⇐⇒ 𝑥 ≡ 𝑐

• It follows that
α[C/X] (𝑐) ≡ 𝑐

for all 𝑐 : C.

9/27

Consequences of Parametricity, part 1

The Old Chestnut: every polymorphic function α : X → X in λ[X] is
extensionally equivalent to the identity function.

Proof:
• By parametricity, we know that for any type C in any theory 𝕋 , and any
predicate P ⊆ JCK, we have

∀𝑥 : C, P(𝑥) =⇒ P(α[C/X] (𝑥))

• Hence for any 𝑐 : C, let P = {J𝑐K}. By construction we have

𝑥 ∈ P ⇐⇒ 𝑥 ≡ 𝑐

• It follows that
α[C/X] (𝑐) ≡ 𝑐

for all 𝑐 : C.

10/27

Consequences of Parametricity, part 2

Further Example: every polymorphic function X → X → X × X is
extensionally equivalent to one of the following four functions:

λ𝑥.λ𝑦.(𝑥, 𝑦) λ𝑥.λ𝑦.(𝑦, 𝑥) λ𝑥.λ𝑦.(𝑥, 𝑥) λ𝑥.λ𝑦.(𝑦, 𝑦)

Proof:

• As before, we can unfold the parametricity theorem for α to the
following: for any type C in any theory 𝕋 and any predicate P ⊆ JCK

∀𝑥0, 𝑥1 : C, P(𝑥0) and P(𝑥1)
=⇒ P(π1(α[C/X] (𝑥0) (𝑥1))) and P(π2 (α[C/X] (𝑥0) (𝑥1)))

• Hence for any 𝑐0, 𝑐1 : C, we can take P = {𝑐0, 𝑐1}, by which it follows that

π1 (α[C/X] (𝑐0) (𝑐1)) ∈ {𝑐0, 𝑐1} and π2 (α[C/X] (𝑐0) (𝑐1)) ∈ {𝑐0, 𝑐1}

10/27

Consequences of Parametricity, part 2

Further Example: every polymorphic function X → X → X × X is
extensionally equivalent to one of the following four functions:

λ𝑥.λ𝑦.(𝑥, 𝑦) λ𝑥.λ𝑦.(𝑦, 𝑥) λ𝑥.λ𝑦.(𝑥, 𝑥) λ𝑥.λ𝑦.(𝑦, 𝑦)

Proof:

• As before, we can unfold the parametricity theorem for α to the
following: for any type C in any theory 𝕋 and any predicate P ⊆ JCK

∀𝑥0, 𝑥1 : C, P(𝑥0) and P(𝑥1)
=⇒ P(π1 (α[C/X] (𝑥0) (𝑥1))) and P(π2 (α[C/X] (𝑥0) (𝑥1)))

• Hence for any 𝑐0, 𝑐1 : C, we can take P = {𝑐0, 𝑐1}, by which it follows that

π1 (α[C/X] (𝑐0) (𝑐1)) ∈ {𝑐0, 𝑐1} and π2 (α[C/X] (𝑐0) (𝑐1)) ∈ {𝑐0, 𝑐1}

10/27

Consequences of Parametricity, part 2

Further Example: every polymorphic function X → X → X × X is
extensionally equivalent to one of the following four functions:

λ𝑥.λ𝑦.(𝑥, 𝑦) λ𝑥.λ𝑦.(𝑦, 𝑥) λ𝑥.λ𝑦.(𝑥, 𝑥) λ𝑥.λ𝑦.(𝑦, 𝑦)

Proof:
• As before, we can unfold the parametricity theorem for α to the
following: for any type C in any theory 𝕋 and any predicate P ⊆ JCK

∀𝑥0, 𝑥1 : C, P(𝑥0) and P(𝑥1)
=⇒ P(π1 (α[C/X] (𝑥0) (𝑥1))) and P(π2 (α[C/X] (𝑥0) (𝑥1)))

• Hence for any 𝑐0, 𝑐1 : C, we can take P = {𝑐0, 𝑐1}, by which it follows that

π1 (α[C/X] (𝑐0) (𝑐1)) ∈ {𝑐0, 𝑐1} and π2 (α[C/X] (𝑐0) (𝑐1)) ∈ {𝑐0, 𝑐1}

10/27

Consequences of Parametricity, part 2

Further Example: every polymorphic function X → X → X × X is
extensionally equivalent to one of the following four functions:

λ𝑥.λ𝑦.(𝑥, 𝑦) λ𝑥.λ𝑦.(𝑦, 𝑥) λ𝑥.λ𝑦.(𝑥, 𝑥) λ𝑥.λ𝑦.(𝑦, 𝑦)

Proof:
• As before, we can unfold the parametricity theorem for α to the
following: for any type C in any theory 𝕋 and any predicate P ⊆ JCK

∀𝑥0, 𝑥1 : C, P(𝑥0) and P(𝑥1)
=⇒ P(π1 (α[C/X] (𝑥0) (𝑥1))) and P(π2 (α[C/X] (𝑥0) (𝑥1)))

• Hence for any 𝑐0, 𝑐1 : C, we can take P = {𝑐0, 𝑐1}, by which it follows that

π1 (α[C/X] (𝑐0) (𝑐1)) ∈ {𝑐0, 𝑐1} and π2 (α[C/X] (𝑐0) (𝑐1)) ∈ {𝑐0, 𝑐1}

11/27

Monoidal Categories
Amonoidal category is a (pseudo)monoid object in Cat, i.e. a categoryM
equipped with

I ∈ M and ⊗ : M ×M → M

that are unital and associative up to coherent isomorphism.

A symmetric monoidal category (SMC) is a monoidal categoryM that
additionally carries a coherent natural isomorphism

A ⊗ B � B ⊗ A

A monoidal categoryM is (bi)closed if for all A ∈ M both A ⊗ − and − ⊗ A
have right adjoints A _ − and − ^ A, respectively.

Examples:

• A monoid can be regarded as monoidal category with trivial morphisms,
and likewise for commutative monoids and SMCs.

• A Cartesian Closed Category canonically carries the structure of a closed
SMC with the monoidal structure given by finite products.

11/27

Monoidal Categories
Amonoidal category is a (pseudo)monoid object in Cat, i.e. a categoryM
equipped with

I ∈ M and ⊗ : M ×M → M

that are unital and associative up to coherent isomorphism.

A symmetric monoidal category (SMC) is a monoidal categoryM that
additionally carries a coherent natural isomorphism

A ⊗ B � B ⊗ A

A monoidal categoryM is (bi)closed if for all A ∈ M both A ⊗ − and − ⊗ A
have right adjoints A _ − and − ^ A, respectively.

Examples:

• A monoid can be regarded as monoidal category with trivial morphisms,
and likewise for commutative monoids and SMCs.

• A Cartesian Closed Category canonically carries the structure of a closed
SMC with the monoidal structure given by finite products.

11/27

Monoidal Categories
Amonoidal category is a (pseudo)monoid object in Cat, i.e. a categoryM
equipped with

I ∈ M and ⊗ : M ×M → M

that are unital and associative up to coherent isomorphism.

A symmetric monoidal category (SMC) is a monoidal categoryM that
additionally carries a coherent natural isomorphism

A ⊗ B � B ⊗ A

A monoidal categoryM is (bi)closed if for all A ∈ M both A ⊗ − and − ⊗ A
have right adjoints A _ − and − ^ A, respectively.

Examples:

• A monoid can be regarded as monoidal category with trivial morphisms,
and likewise for commutative monoids and SMCs.

• A Cartesian Closed Category canonically carries the structure of a closed
SMC with the monoidal structure given by finite products.

11/27

Monoidal Categories
Amonoidal category is a (pseudo)monoid object in Cat, i.e. a categoryM
equipped with

I ∈ M and ⊗ : M ×M → M

that are unital and associative up to coherent isomorphism.

A symmetric monoidal category (SMC) is a monoidal categoryM that
additionally carries a coherent natural isomorphism

A ⊗ B � B ⊗ A

A monoidal categoryM is (bi)closed if for all A ∈ M both A ⊗ − and − ⊗ A
have right adjoints A _ − and − ^ A, respectively.

Examples:

• A monoid can be regarded as monoidal category with trivial morphisms,
and likewise for commutative monoids and SMCs.

• A Cartesian Closed Category canonically carries the structure of a closed
SMC with the monoidal structure given by finite products.

11/27

Monoidal Categories
Amonoidal category is a (pseudo)monoid object in Cat, i.e. a categoryM
equipped with

I ∈ M and ⊗ : M ×M → M

that are unital and associative up to coherent isomorphism.

A symmetric monoidal category (SMC) is a monoidal categoryM that
additionally carries a coherent natural isomorphism

A ⊗ B � B ⊗ A

A monoidal categoryM is (bi)closed if for all A ∈ M both A ⊗ − and − ⊗ A
have right adjoints A _ − and − ^ A, respectively.

Examples:
• A monoid can be regarded as monoidal category with trivial morphisms,
and likewise for commutative monoids and SMCs.

• A Cartesian Closed Category canonically carries the structure of a closed
SMC with the monoidal structure given by finite products.

11/27

Monoidal Categories
Amonoidal category is a (pseudo)monoid object in Cat, i.e. a categoryM
equipped with

I ∈ M and ⊗ : M ×M → M

that are unital and associative up to coherent isomorphism.

A symmetric monoidal category (SMC) is a monoidal categoryM that
additionally carries a coherent natural isomorphism

A ⊗ B � B ⊗ A

A monoidal categoryM is (bi)closed if for all A ∈ M both A ⊗ − and − ⊗ A
have right adjoints A _ − and − ^ A, respectively.

Examples:
• A monoid can be regarded as monoidal category with trivial morphisms,
and likewise for commutative monoids and SMCs.

• A Cartesian Closed Category canonically carries the structure of a closed
SMC with the monoidal structure given by finite products.

12/27

Substructural λ-Calculus
We may obtain substructural variants of STLC by restricting the usage of
variables in forming terms. Specifically:

• Linear λ-calculus requires each variable to be used exactly once.
• Ordered λ-calculus additionally requires variables to be used in the
order in which they occur in the typing context.

Ordered λ-calculus may then be characterized as the internal language of
biclosed monoidal categories, and linear λ-calculus as the internal language of
closed symmetric monoidal categories, in that there are equivalences

STLCOrd MonCatBiclosed
Syn

L

≃

and

STLCLin SMCClosed

Syn

L

≃

12/27

Substructural λ-Calculus
We may obtain substructural variants of STLC by restricting the usage of
variables in forming terms. Specifically:

• Linear λ-calculus requires each variable to be used exactly once.

• Ordered λ-calculus additionally requires variables to be used in the
order in which they occur in the typing context.

Ordered λ-calculus may then be characterized as the internal language of
biclosed monoidal categories, and linear λ-calculus as the internal language of
closed symmetric monoidal categories, in that there are equivalences

STLCOrd MonCatBiclosed
Syn

L

≃

and

STLCLin SMCClosed

Syn

L

≃

12/27

Substructural λ-Calculus
We may obtain substructural variants of STLC by restricting the usage of
variables in forming terms. Specifically:

• Linear λ-calculus requires each variable to be used exactly once.
• Ordered λ-calculus additionally requires variables to be used in the
order in which they occur in the typing context.

Ordered λ-calculus may then be characterized as the internal language of
biclosed monoidal categories, and linear λ-calculus as the internal language of
closed symmetric monoidal categories, in that there are equivalences

STLCOrd MonCatBiclosed
Syn

L

≃

and

STLCLin SMCClosed

Syn

L

≃

12/27

Substructural λ-Calculus
We may obtain substructural variants of STLC by restricting the usage of
variables in forming terms. Specifically:

• Linear λ-calculus requires each variable to be used exactly once.
• Ordered λ-calculus additionally requires variables to be used in the
order in which they occur in the typing context.

Ordered λ-calculus may then be characterized as the internal language of
biclosed monoidal categories, and linear λ-calculus as the internal language of
closed symmetric monoidal categories, in that there are equivalences

STLCOrd MonCatBiclosed
Syn

L

≃

and

STLCLin SMCClosed

Syn

L

≃

13/27

Substructural Parametricity?

Intuitively, linear/ordered λ-calculus is more restrictive than ordinary
λ-calculus—hence we should be able to obtain stronger parametricity
theorems about terms in the former.

We could try to repeat the proof of parametricity for ordinary STLC by
considering (e.g.) the theory λO𝑟𝑑 [X] of a type X in ordered STLC and defining
logical relations for this theory as before. However, this gives us no additional
information about terms in ordered λ-calculus beyond what could already be
deduced from the parametricity theorem for ordinary λ-calculus.

For instance, we can apply the same argument as before to show that any
polymorphic function α : X → X → X ⊗ X in ordered λ-calculus must be
equivalent to one of the following four functions

λ𝑥.λ𝑦.(𝑥, 𝑦) λ𝑥.λ𝑦.(𝑦, 𝑥) λ𝑥.λ𝑦.(𝑥, 𝑥) λ𝑥.λ𝑦.(𝑦, 𝑦)

but we cannot deduce the stronger (but correct) result that in fact α must be
equivalent to only the first of these.

13/27

Substructural Parametricity?

Intuitively, linear/ordered λ-calculus is more restrictive than ordinary
λ-calculus—hence we should be able to obtain stronger parametricity
theorems about terms in the former.

We could try to repeat the proof of parametricity for ordinary STLC by
considering (e.g.) the theory λO𝑟𝑑 [X] of a type X in ordered STLC and defining
logical relations for this theory as before. However, this gives us no additional
information about terms in ordered λ-calculus beyond what could already be
deduced from the parametricity theorem for ordinary λ-calculus.

For instance, we can apply the same argument as before to show that any
polymorphic function α : X → X → X ⊗ X in ordered λ-calculus must be
equivalent to one of the following four functions

λ𝑥.λ𝑦.(𝑥, 𝑦) λ𝑥.λ𝑦.(𝑦, 𝑥) λ𝑥.λ𝑦.(𝑥, 𝑥) λ𝑥.λ𝑦.(𝑦, 𝑦)

but we cannot deduce the stronger (but correct) result that in fact α must be
equivalent to only the first of these.

13/27

Substructural Parametricity?

Intuitively, linear/ordered λ-calculus is more restrictive than ordinary
λ-calculus—hence we should be able to obtain stronger parametricity
theorems about terms in the former.

We could try to repeat the proof of parametricity for ordinary STLC by
considering (e.g.) the theory λO𝑟𝑑 [X] of a type X in ordered STLC and defining
logical relations for this theory as before. However, this gives us no additional
information about terms in ordered λ-calculus beyond what could already be
deduced from the parametricity theorem for ordinary λ-calculus.

For instance, we can apply the same argument as before to show that any
polymorphic function α : X → X → X ⊗ X in ordered λ-calculus must be
equivalent to one of the following four functions

λ𝑥.λ𝑦.(𝑥, 𝑦) λ𝑥.λ𝑦.(𝑦, 𝑥) λ𝑥.λ𝑦.(𝑥, 𝑥) λ𝑥.λ𝑦.(𝑦, 𝑦)

but we cannot deduce the stronger (but correct) result that in fact α must be
equivalent to only the first of these.

14/27

Substructural Logical Relations
The solution is to parameterize our logical relations by a monoid (M, ϵ , ·).

Fix a theory 𝕋 in ordered STLC and a type C in 𝕋 with a relation
R ⊆ M × JCK. Then for each type τ in λO𝑟𝑑 [X] we define a relation

⊩τ ⊆ M × JτK

as follows:

𝑚 ⊩X 𝑥 ⇐⇒ R(𝑚, 𝑥)

𝑚 ⊩1 𝑢 ⇐⇒ 𝑚 = ϵ and 𝑢 ≡ ⟨⟩

𝑚 ⊩A[X]⊗B[X] ⟨𝑎, 𝑏⟩ ⇐⇒ ∃𝑛, 𝑘 ∈ M, such that

𝑚 = 𝑛 · 𝑘, 𝑛 ⊩A[X] 𝑎, and 𝑘 ⊩B[X] 𝑏

𝑚 ⊩A[X]_B[X] 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A[C] ,

𝑛 ⊩A[X] 𝑎 =⇒ 𝑛 · 𝑚 ⊩B[X] 𝑓 (𝑎)

𝑚 ⊩B[X]^A[X] 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A[C] ,

𝑛 ⊩A[X] 𝑎 =⇒ 𝑚 · 𝑛 ⊩B[X] 𝑓 (𝑎)

14/27

Substructural Logical Relations
The solution is to parameterize our logical relations by a monoid (M, ϵ , ·).
Fix a theory 𝕋 in ordered STLC and a type C in 𝕋 with a relation
R ⊆ M × JCK. Then for each type τ in λO𝑟𝑑 [X] we define a relation

⊩τ ⊆ M × JτK

as follows:

𝑚 ⊩X 𝑥 ⇐⇒ R(𝑚, 𝑥)

𝑚 ⊩1 𝑢 ⇐⇒ 𝑚 = ϵ and 𝑢 ≡ ⟨⟩

𝑚 ⊩A[X]⊗B[X] ⟨𝑎, 𝑏⟩ ⇐⇒ ∃𝑛, 𝑘 ∈ M, such that

𝑚 = 𝑛 · 𝑘, 𝑛 ⊩A[X] 𝑎, and 𝑘 ⊩B[X] 𝑏

𝑚 ⊩A[X]_B[X] 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A[C] ,

𝑛 ⊩A[X] 𝑎 =⇒ 𝑛 · 𝑚 ⊩B[X] 𝑓 (𝑎)

𝑚 ⊩B[X]^A[X] 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A[C] ,

𝑛 ⊩A[X] 𝑎 =⇒ 𝑚 · 𝑛 ⊩B[X] 𝑓 (𝑎)

14/27

Substructural Logical Relations
The solution is to parameterize our logical relations by a monoid (M, ϵ , ·).
Fix a theory 𝕋 in ordered STLC and a type C in 𝕋 with a relation
R ⊆ M × JCK. Then for each type τ in λO𝑟𝑑 [X] we define a relation

⊩τ ⊆ M × JτK

as follows:

𝑚 ⊩X 𝑥 ⇐⇒ R(𝑚, 𝑥)

𝑚 ⊩1 𝑢 ⇐⇒ 𝑚 = ϵ and 𝑢 ≡ ⟨⟩

𝑚 ⊩A[X]⊗B[X] ⟨𝑎, 𝑏⟩ ⇐⇒ ∃𝑛, 𝑘 ∈ M, such that

𝑚 = 𝑛 · 𝑘, 𝑛 ⊩A[X] 𝑎, and 𝑘 ⊩B[X] 𝑏

𝑚 ⊩A[X]_B[X] 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A[C] ,

𝑛 ⊩A[X] 𝑎 =⇒ 𝑛 · 𝑚 ⊩B[X] 𝑓 (𝑎)

𝑚 ⊩B[X]^A[X] 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A[C] ,

𝑛 ⊩A[X] 𝑎 =⇒ 𝑚 · 𝑛 ⊩B[X] 𝑓 (𝑎)

14/27

Substructural Logical Relations
The solution is to parameterize our logical relations by a monoid (M, ϵ , ·).
Fix a theory 𝕋 in ordered STLC and a type C in 𝕋 with a relation
R ⊆ M × JCK. Then for each type τ in λO𝑟𝑑 [X] we define a relation

⊩τ ⊆ M × JτK

as follows:

𝑚 ⊩X 𝑥 ⇐⇒ R(𝑚, 𝑥)

𝑚 ⊩1 𝑢 ⇐⇒ 𝑚 = ϵ and 𝑢 ≡ ⟨⟩

𝑚 ⊩A[X]⊗B[X] ⟨𝑎, 𝑏⟩ ⇐⇒ ∃𝑛, 𝑘 ∈ M, such that

𝑚 = 𝑛 · 𝑘, 𝑛 ⊩A[X] 𝑎, and 𝑘 ⊩B[X] 𝑏

𝑚 ⊩A[X]_B[X] 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A[C] ,

𝑛 ⊩A[X] 𝑎 =⇒ 𝑛 · 𝑚 ⊩B[X] 𝑓 (𝑎)

𝑚 ⊩B[X]^A[X] 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A[C] ,

𝑛 ⊩A[X] 𝑎 =⇒ 𝑚 · 𝑛 ⊩B[X] 𝑓 (𝑎)

14/27

Substructural Logical Relations
The solution is to parameterize our logical relations by a monoid (M, ϵ , ·).
Fix a theory 𝕋 in ordered STLC and a type C in 𝕋 with a relation
R ⊆ M × JCK. Then for each type τ in λO𝑟𝑑 [X] we define a relation

⊩τ ⊆ M × JτK

as follows:

𝑚 ⊩X 𝑥 ⇐⇒ R(𝑚, 𝑥)

𝑚 ⊩1 𝑢 ⇐⇒ 𝑚 = ϵ and 𝑢 ≡ ⟨⟩

𝑚 ⊩A[X]⊗B[X] ⟨𝑎, 𝑏⟩ ⇐⇒ ∃𝑛, 𝑘 ∈ M, such that

𝑚 = 𝑛 · 𝑘, 𝑛 ⊩A[X] 𝑎, and 𝑘 ⊩B[X] 𝑏

𝑚 ⊩A[X]_B[X] 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A[C] ,

𝑛 ⊩A[X] 𝑎 =⇒ 𝑛 · 𝑚 ⊩B[X] 𝑓 (𝑎)

𝑚 ⊩B[X]^A[X] 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A[C] ,

𝑛 ⊩A[X] 𝑎 =⇒ 𝑚 · 𝑛 ⊩B[X] 𝑓 (𝑎)

14/27

Substructural Logical Relations
The solution is to parameterize our logical relations by a monoid (M, ϵ , ·).
Fix a theory 𝕋 in ordered STLC and a type C in 𝕋 with a relation
R ⊆ M × JCK. Then for each type τ in λO𝑟𝑑 [X] we define a relation

⊩τ ⊆ M × JτK

as follows:

𝑚 ⊩X 𝑥 ⇐⇒ R(𝑚, 𝑥)

𝑚 ⊩1 𝑢 ⇐⇒ 𝑚 = ϵ and 𝑢 ≡ ⟨⟩

𝑚 ⊩A[X]⊗B[X] ⟨𝑎, 𝑏⟩ ⇐⇒ ∃𝑛, 𝑘 ∈ M, such that

𝑚 = 𝑛 · 𝑘, 𝑛 ⊩A[X] 𝑎, and 𝑘 ⊩B[X] 𝑏

𝑚 ⊩A[X]_B[X] 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A[C] ,

𝑛 ⊩A[X] 𝑎 =⇒ 𝑛 · 𝑚 ⊩B[X] 𝑓 (𝑎)

𝑚 ⊩B[X]^A[X] 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A[C] ,

𝑛 ⊩A[X] 𝑎 =⇒ 𝑚 · 𝑛 ⊩B[X] 𝑓 (𝑎)

14/27

Substructural Logical Relations
The solution is to parameterize our logical relations by a monoid (M, ϵ , ·).
Fix a theory 𝕋 in ordered STLC and a type C in 𝕋 with a relation
R ⊆ M × JCK. Then for each type τ in λO𝑟𝑑 [X] we define a relation

⊩τ ⊆ M × JτK

as follows:

𝑚 ⊩X 𝑥 ⇐⇒ R(𝑚, 𝑥)

𝑚 ⊩1 𝑢 ⇐⇒ 𝑚 = ϵ and 𝑢 ≡ ⟨⟩

𝑚 ⊩A[X]⊗B[X] ⟨𝑎, 𝑏⟩ ⇐⇒ ∃𝑛, 𝑘 ∈ M, such that

𝑚 = 𝑛 · 𝑘, 𝑛 ⊩A[X] 𝑎, and 𝑘 ⊩B[X] 𝑏

𝑚 ⊩A[X]_B[X] 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A[C] ,

𝑛 ⊩A[X] 𝑎 =⇒ 𝑛 · 𝑚 ⊩B[X] 𝑓 (𝑎)

𝑚 ⊩B[X]^A[X] 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A[C] ,

𝑛 ⊩A[X] 𝑎 =⇒ 𝑚 · 𝑛 ⊩B[X] 𝑓 (𝑎)

15/27

The Fundamental Theorem

We have the following:

FTLR for Ordered STLC: For any type ℂ in a theory 𝕋 in Ordered STLC, if
Γ[X] ⊢ 𝑎 : A[X] is an open term in λO𝑟𝑑 [X] , and (M, ϵ , ·) is anymonoid, then

∀γ : Γ[C] , 𝑚 ∈ M, if 𝑚 ⊩Γ[X] γ then 𝑚 ⊩A[X] 𝑎[C/X] [γ/Γ]

and

FTLR for Linear STLC: For any type ℂ in a theory 𝕋 in Linear STLC, if
Γ[X] ⊢ 𝑎 : A[X] is an open term in λL𝑖𝑛 [X] , and (M, ϵ , ·) is any commutative
monoid, then

∀γ : Γ[C] , 𝑚 ∈ M, if 𝑚 ⊩Γ[X] γ then 𝑚 ⊩A[X] 𝑎[C/X] [γ/Γ]

Proof (both): induction on the derivation of Γ[X] ⊢ 𝑎 : A[X]

15/27

The Fundamental Theorem

We have the following:

FTLR for Ordered STLC: For any type ℂ in a theory 𝕋 in Ordered STLC, if
Γ[X] ⊢ 𝑎 : A[X] is an open term in λO𝑟𝑑 [X] , and (M, ϵ , ·) is anymonoid, then

∀γ : Γ[C] , 𝑚 ∈ M, if 𝑚 ⊩Γ[X] γ then 𝑚 ⊩A[X] 𝑎[C/X] [γ/Γ]

and

FTLR for Linear STLC: For any type ℂ in a theory 𝕋 in Linear STLC, if
Γ[X] ⊢ 𝑎 : A[X] is an open term in λL𝑖𝑛 [X] , and (M, ϵ , ·) is any commutative
monoid, then

∀γ : Γ[C] , 𝑚 ∈ M, if 𝑚 ⊩Γ[X] γ then 𝑚 ⊩A[X] 𝑎[C/X] [γ/Γ]

Proof (both): induction on the derivation of Γ[X] ⊢ 𝑎 : A[X]

15/27

The Fundamental Theorem

We have the following:

FTLR for Ordered STLC: For any type ℂ in a theory 𝕋 in Ordered STLC, if
Γ[X] ⊢ 𝑎 : A[X] is an open term in λO𝑟𝑑 [X] , and (M, ϵ , ·) is anymonoid, then

∀γ : Γ[C] , 𝑚 ∈ M, if 𝑚 ⊩Γ[X] γ then 𝑚 ⊩A[X] 𝑎[C/X] [γ/Γ]

and

FTLR for Linear STLC: For any type ℂ in a theory 𝕋 in Linear STLC, if
Γ[X] ⊢ 𝑎 : A[X] is an open term in λL𝑖𝑛 [X] , and (M, ϵ , ·) is any commutative
monoid, then

∀γ : Γ[C] , 𝑚 ∈ M, if 𝑚 ⊩Γ[X] γ then 𝑚 ⊩A[X] 𝑎[C/X] [γ/Γ]

Proof (both): induction on the derivation of Γ[X] ⊢ 𝑎 : A[X]

15/27

The Fundamental Theorem

We have the following:

FTLR for Ordered STLC: For any type ℂ in a theory 𝕋 in Ordered STLC, if
Γ[X] ⊢ 𝑎 : A[X] is an open term in λO𝑟𝑑 [X] , and (M, ϵ , ·) is anymonoid, then

∀γ : Γ[C] , 𝑚 ∈ M, if 𝑚 ⊩Γ[X] γ then 𝑚 ⊩A[X] 𝑎[C/X] [γ/Γ]

and

FTLR for Linear STLC: For any type ℂ in a theory 𝕋 in Linear STLC, if
Γ[X] ⊢ 𝑎 : A[X] is an open term in λL𝑖𝑛 [X] , and (M, ϵ , ·) is any commutative
monoid, then

∀γ : Γ[C] , 𝑚 ∈ M, if 𝑚 ⊩Γ[X] γ then 𝑚 ⊩A[X] 𝑎[C/X] [γ/Γ]

Proof (both): induction on the derivation of Γ[X] ⊢ 𝑎 : A[X]

15/27

The Fundamental Theorem

We have the following:

FTLR for Ordered STLC: For any type ℂ in a theory 𝕋 in Ordered STLC, if
Γ[X] ⊢ 𝑎 : A[X] is an open term in λO𝑟𝑑 [X] , and (M, ϵ , ·) is anymonoid, then

∀γ : Γ[C] , 𝑚 ∈ M, if 𝑚 ⊩Γ[X] γ then 𝑚 ⊩A[X] 𝑎[C/X] [γ/Γ]

and

FTLR for Linear STLC: For any type ℂ in a theory 𝕋 in Linear STLC, if
Γ[X] ⊢ 𝑎 : A[X] is an open term in λL𝑖𝑛 [X] , and (M, ϵ , ·) is any commutative
monoid, then

∀γ : Γ[C] , 𝑚 ∈ M, if 𝑚 ⊩Γ[X] γ then 𝑚 ⊩A[X] 𝑎[C/X] [γ/Γ]

Proof (both): induction on the derivation of Γ[X] ⊢ 𝑎 : A[X]

16/27

Applications of Substructural Parametricity
Theorem: every polymorphic function 𭟋 : X _ X _ X ⊗ X in ordered STLC
must be extensionally equivalent to

λ𝑥.λ𝑦.⟨𝑥, 𝑦⟩

Proof: letM be the free monoid on two generators α, β, i.e. the set of strings
𝑥1𝑥2 . . . 𝑥𝑛 with 𝑥𝑖 ∈ {α, β}, with · given by string concatenation.

Then for any type C with 𝑐0, 𝑐1 : C, define R ⊆ M × JCK by

R(𝑚, 𝑥) ⇐⇒ either 𝑚 = α and 𝑥 = 𝑐0 or 𝑚 = β and 𝑥 = 𝑐1

By parametricity for 𭟋, we have the following:

• For all 𝑚, 𝑛 ∈ M, if R(𝑚, 𝑐0) and R(𝑛, 𝑐1), we have
𭟋[C/X] 𝑐0 𝑐1 ≡ ⟨𝑐′0, 𝑐′1⟩ and there exist 𝑚′, 𝑛′ ∈ M and 𝑐′0, 𝑐

′
1 : A such that

𝑚𝑛 = 𝑚′𝑛′ and R(𝑚′, 𝑐′0) and R(𝑛′, 𝑐′1).
• Substituting α for 𝑚 and β for 𝑛, this implies that we have 𝑚′, 𝑛′ ∈ {α, β}
such that αβ = 𝑚′𝑛′, which implies that 𝑚′ = α and 𝑛′ = β, and therefore
𝑐′0 = 𝑐0 and 𝑐′1 = 𝑐1, i.e.

𭟋[C/X]𝑐0 𝑐1 ≡ ⟨𝑐0, 𝑐1⟩

16/27

Applications of Substructural Parametricity
Theorem: every polymorphic function 𭟋 : X _ X _ X ⊗ X in ordered STLC
must be extensionally equivalent to

λ𝑥.λ𝑦.⟨𝑥, 𝑦⟩

Proof: letM be the free monoid on two generators α, β, i.e. the set of strings
𝑥1𝑥2 . . . 𝑥𝑛 with 𝑥𝑖 ∈ {α, β}, with · given by string concatenation.

Then for any type C with 𝑐0, 𝑐1 : C, define R ⊆ M × JCK by

R(𝑚, 𝑥) ⇐⇒ either 𝑚 = α and 𝑥 = 𝑐0 or 𝑚 = β and 𝑥 = 𝑐1

By parametricity for 𭟋, we have the following:

• For all 𝑚, 𝑛 ∈ M, if R(𝑚, 𝑐0) and R(𝑛, 𝑐1), we have
𭟋[C/X] 𝑐0 𝑐1 ≡ ⟨𝑐′0, 𝑐′1⟩ and there exist 𝑚′, 𝑛′ ∈ M and 𝑐′0, 𝑐

′
1 : A such that

𝑚𝑛 = 𝑚′𝑛′ and R(𝑚′, 𝑐′0) and R(𝑛′, 𝑐′1).
• Substituting α for 𝑚 and β for 𝑛, this implies that we have 𝑚′, 𝑛′ ∈ {α, β}
such that αβ = 𝑚′𝑛′, which implies that 𝑚′ = α and 𝑛′ = β, and therefore
𝑐′0 = 𝑐0 and 𝑐′1 = 𝑐1, i.e.

𭟋[C/X]𝑐0 𝑐1 ≡ ⟨𝑐0, 𝑐1⟩

16/27

Applications of Substructural Parametricity
Theorem: every polymorphic function 𭟋 : X _ X _ X ⊗ X in ordered STLC
must be extensionally equivalent to

λ𝑥.λ𝑦.⟨𝑥, 𝑦⟩

Proof: letM be the free monoid on two generators α, β, i.e. the set of strings
𝑥1𝑥2 . . . 𝑥𝑛 with 𝑥𝑖 ∈ {α, β}, with · given by string concatenation.

Then for any type C with 𝑐0, 𝑐1 : C, define R ⊆ M × JCK by

R(𝑚, 𝑥) ⇐⇒ either 𝑚 = α and 𝑥 = 𝑐0 or 𝑚 = β and 𝑥 = 𝑐1

By parametricity for 𭟋, we have the following:

• For all 𝑚, 𝑛 ∈ M, if R(𝑚, 𝑐0) and R(𝑛, 𝑐1), we have
𭟋[C/X] 𝑐0 𝑐1 ≡ ⟨𝑐′0, 𝑐′1⟩ and there exist 𝑚′, 𝑛′ ∈ M and 𝑐′0, 𝑐

′
1 : A such that

𝑚𝑛 = 𝑚′𝑛′ and R(𝑚′, 𝑐′0) and R(𝑛′, 𝑐′1).
• Substituting α for 𝑚 and β for 𝑛, this implies that we have 𝑚′, 𝑛′ ∈ {α, β}
such that αβ = 𝑚′𝑛′, which implies that 𝑚′ = α and 𝑛′ = β, and therefore
𝑐′0 = 𝑐0 and 𝑐′1 = 𝑐1, i.e.

𭟋[C/X]𝑐0 𝑐1 ≡ ⟨𝑐0, 𝑐1⟩

16/27

Applications of Substructural Parametricity
Theorem: every polymorphic function 𭟋 : X _ X _ X ⊗ X in ordered STLC
must be extensionally equivalent to

λ𝑥.λ𝑦.⟨𝑥, 𝑦⟩

Proof: letM be the free monoid on two generators α, β, i.e. the set of strings
𝑥1𝑥2 . . . 𝑥𝑛 with 𝑥𝑖 ∈ {α, β}, with · given by string concatenation.

Then for any type C with 𝑐0, 𝑐1 : C, define R ⊆ M × JCK by

R(𝑚, 𝑥) ⇐⇒ either 𝑚 = α and 𝑥 = 𝑐0 or 𝑚 = β and 𝑥 = 𝑐1

By parametricity for 𭟋, we have the following:

• For all 𝑚, 𝑛 ∈ M, if R(𝑚, 𝑐0) and R(𝑛, 𝑐1), we have
𭟋[C/X] 𝑐0 𝑐1 ≡ ⟨𝑐′0, 𝑐′1⟩ and there exist 𝑚′, 𝑛′ ∈ M and 𝑐′0, 𝑐

′
1 : A such that

𝑚𝑛 = 𝑚′𝑛′ and R(𝑚′, 𝑐′0) and R(𝑛′, 𝑐′1).
• Substituting α for 𝑚 and β for 𝑛, this implies that we have 𝑚′, 𝑛′ ∈ {α, β}
such that αβ = 𝑚′𝑛′, which implies that 𝑚′ = α and 𝑛′ = β, and therefore
𝑐′0 = 𝑐0 and 𝑐′1 = 𝑐1, i.e.

𭟋[C/X]𝑐0 𝑐1 ≡ ⟨𝑐0, 𝑐1⟩

16/27

Applications of Substructural Parametricity
Theorem: every polymorphic function 𭟋 : X _ X _ X ⊗ X in ordered STLC
must be extensionally equivalent to

λ𝑥.λ𝑦.⟨𝑥, 𝑦⟩

Proof: letM be the free monoid on two generators α, β, i.e. the set of strings
𝑥1𝑥2 . . . 𝑥𝑛 with 𝑥𝑖 ∈ {α, β}, with · given by string concatenation.

Then for any type C with 𝑐0, 𝑐1 : C, define R ⊆ M × JCK by

R(𝑚, 𝑥) ⇐⇒ either 𝑚 = α and 𝑥 = 𝑐0 or 𝑚 = β and 𝑥 = 𝑐1

By parametricity for 𭟋, we have the following:
• For all 𝑚, 𝑛 ∈ M, if R(𝑚, 𝑐0) and R(𝑛, 𝑐1), we have
𭟋[C/X] 𝑐0 𝑐1 ≡ ⟨𝑐′0, 𝑐′1⟩ and there exist 𝑚′, 𝑛′ ∈ M and 𝑐′0, 𝑐

′
1 : A such that

𝑚𝑛 = 𝑚′𝑛′ and R(𝑚′, 𝑐′0) and R(𝑛′, 𝑐′1).

• Substituting α for 𝑚 and β for 𝑛, this implies that we have 𝑚′, 𝑛′ ∈ {α, β}
such that αβ = 𝑚′𝑛′, which implies that 𝑚′ = α and 𝑛′ = β, and therefore
𝑐′0 = 𝑐0 and 𝑐′1 = 𝑐1, i.e.

𭟋[C/X]𝑐0 𝑐1 ≡ ⟨𝑐0, 𝑐1⟩

16/27

Applications of Substructural Parametricity
Theorem: every polymorphic function 𭟋 : X _ X _ X ⊗ X in ordered STLC
must be extensionally equivalent to

λ𝑥.λ𝑦.⟨𝑥, 𝑦⟩

Proof: letM be the free monoid on two generators α, β, i.e. the set of strings
𝑥1𝑥2 . . . 𝑥𝑛 with 𝑥𝑖 ∈ {α, β}, with · given by string concatenation.

Then for any type C with 𝑐0, 𝑐1 : C, define R ⊆ M × JCK by

R(𝑚, 𝑥) ⇐⇒ either 𝑚 = α and 𝑥 = 𝑐0 or 𝑚 = β and 𝑥 = 𝑐1

By parametricity for 𭟋, we have the following:
• For all 𝑚, 𝑛 ∈ M, if R(𝑚, 𝑐0) and R(𝑛, 𝑐1), we have
𭟋[C/X] 𝑐0 𝑐1 ≡ ⟨𝑐′0, 𝑐′1⟩ and there exist 𝑚′, 𝑛′ ∈ M and 𝑐′0, 𝑐

′
1 : A such that

𝑚𝑛 = 𝑚′𝑛′ and R(𝑚′, 𝑐′0) and R(𝑛′, 𝑐′1).
• Substituting α for 𝑚 and β for 𝑛, this implies that we have 𝑚′, 𝑛′ ∈ {α, β}
such that αβ = 𝑚′𝑛′, which implies that 𝑚′ = α and 𝑛′ = β, and therefore
𝑐′0 = 𝑐0 and 𝑐′1 = 𝑐1, i.e.

𭟋[C/X]𝑐0 𝑐1 ≡ ⟨𝑐0, 𝑐1⟩

17/27

How did I do that?

18/27

From Logical to Categorical Relations

Question: Can we derive parametricity from properties of SynλO𝑟𝑑 [X] , rather
than going via laborious inductions on syntax?

Fact: SynλO𝑟𝑑 [X] is the initial object in the category of pointed biclosed
monoidal categories and strict functors between them.

Idea: given
• a monoid (M, ϵ , ·),
• a type C in a theory 𝕋 of ordered STLC,
• a relation R ⊆ M × JCK

construct a pointed biclosed monoidal “Category of Relations” RelM,C,R , and
derive parametricity from the existence of a (strict) biclosed monoidal functor

SynλO𝑟𝑑 [X] → RelM,C,R

But how to construct RelM,C,R?

18/27

From Logical to Categorical Relations

Question: Can we derive parametricity from properties of SynλO𝑟𝑑 [X] , rather
than going via laborious inductions on syntax?

Fact: SynλO𝑟𝑑 [X] is the initial object in the category of pointed biclosed
monoidal categories and strict functors between them.

Idea: given
• a monoid (M, ϵ , ·),
• a type C in a theory 𝕋 of ordered STLC,
• a relation R ⊆ M × JCK

construct a pointed biclosed monoidal “Category of Relations” RelM,C,R , and
derive parametricity from the existence of a (strict) biclosed monoidal functor

SynλO𝑟𝑑 [X] → RelM,C,R

But how to construct RelM,C,R?

18/27

From Logical to Categorical Relations

Question: Can we derive parametricity from properties of SynλO𝑟𝑑 [X] , rather
than going via laborious inductions on syntax?

Fact: SynλO𝑟𝑑 [X] is the initial object in the category of pointed biclosed
monoidal categories and strict functors between them.

Idea: given
• a monoid (M, ϵ , ·),
• a type C in a theory 𝕋 of ordered STLC,
• a relation R ⊆ M × JCK

construct a pointed biclosed monoidal “Category of Relations” RelM,C,R , and
derive parametricity from the existence of a (strict) biclosed monoidal functor

SynλO𝑟𝑑 [X] → RelM,C,R

But how to construct RelM,C,R?

18/27

From Logical to Categorical Relations

Question: Can we derive parametricity from properties of SynλO𝑟𝑑 [X] , rather
than going via laborious inductions on syntax?

Fact: SynλO𝑟𝑑 [X] is the initial object in the category of pointed biclosed
monoidal categories and strict functors between them.

Idea: given
• a monoid (M, ϵ , ·),
• a type C in a theory 𝕋 of ordered STLC,
• a relation R ⊆ M × JCK

construct a pointed biclosed monoidal “Category of Relations” RelM,C,R , and
derive parametricity from the existence of a (strict) biclosed monoidal functor

SynλO𝑟𝑑 [X] → RelM,C,R

But how to construct RelM,C,R?

19/27

Indexed Posets & The Grothendieck
Construction

For a category C a C-indexed poset is a functor C → Pos.

Given a C-indexed poset P, its Grothendieck Construction is a category
fibred over C, i.e. ∫ C P

C

π

defined as follows:
• The objects of

∫ C P are pairs (A, 𝑝A), where A ∈ C and 𝑝A ∈ P(A).
• A morphism (A, 𝑝A) → (B, 𝑝B) ∈

∫ C P is a morphism 𝑓 : A → B ∈ C
such that

P(𝑓) (𝑝A) ≤ 𝑝B

• π(A, 𝑝A) = A and π(𝑓) = 𝑓 .

19/27

Indexed Posets & The Grothendieck
Construction

For a category C a C-indexed poset is a functor C → Pos.

Given a C-indexed poset P, its Grothendieck Construction is a category
fibred over C, i.e. ∫ C P

C

π

defined as follows:

• The objects of
∫ C P are pairs (A, 𝑝A), where A ∈ C and 𝑝A ∈ P(A).

• A morphism (A, 𝑝A) → (B, 𝑝B) ∈
∫ C P is a morphism 𝑓 : A → B ∈ C

such that
P(𝑓) (𝑝A) ≤ 𝑝B

• π(A, 𝑝A) = A and π(𝑓) = 𝑓 .

19/27

Indexed Posets & The Grothendieck
Construction

For a category C a C-indexed poset is a functor C → Pos.

Given a C-indexed poset P, its Grothendieck Construction is a category
fibred over C, i.e. ∫ C P

C

π

defined as follows:
• The objects of

∫ C P are pairs (A, 𝑝A), where A ∈ C and 𝑝A ∈ P(A).

• A morphism (A, 𝑝A) → (B, 𝑝B) ∈
∫ C P is a morphism 𝑓 : A → B ∈ C

such that
P(𝑓) (𝑝A) ≤ 𝑝B

• π(A, 𝑝A) = A and π(𝑓) = 𝑓 .

19/27

Indexed Posets & The Grothendieck
Construction

For a category C a C-indexed poset is a functor C → Pos.

Given a C-indexed poset P, its Grothendieck Construction is a category
fibred over C, i.e. ∫ C P

C

π

defined as follows:
• The objects of

∫ C P are pairs (A, 𝑝A), where A ∈ C and 𝑝A ∈ P(A).
• A morphism (A, 𝑝A) → (B, 𝑝B) ∈

∫ C P is a morphism 𝑓 : A → B ∈ C
such that

P(𝑓) (𝑝A) ≤ 𝑝B

• π(A, 𝑝A) = A and π(𝑓) = 𝑓 .

19/27

Indexed Posets & The Grothendieck
Construction

For a category C a C-indexed poset is a functor C → Pos.

Given a C-indexed poset P, its Grothendieck Construction is a category
fibred over C, i.e. ∫ C P

C

π

defined as follows:
• The objects of

∫ C P are pairs (A, 𝑝A), where A ∈ C and 𝑝A ∈ P(A).
• A morphism (A, 𝑝A) → (B, 𝑝B) ∈

∫ C P is a morphism 𝑓 : A → B ∈ C
such that

P(𝑓) (𝑝A) ≤ 𝑝B

• π(A, 𝑝A) = A and π(𝑓) = 𝑓 .

20/27

Lax Monoidal Copresheaves
A lax monoidal copresheaf (LMC) on a monoidal categoryM is a functor
M → Set equipped with coherent natural transformations:

ϵ : 1 → Γ(I) and (·) : Γ(A) × Γ(B) → Γ(A ⊗ B)

Examples/closure properties of LMCs:
• For any monoidal category (M , I, ⊗), the global sections functor

H𝑜𝑚(I,−) : M → Set

carries the structure of an LMC.
• A monoidMmay be regarded as a LMC on the terminal category {∗}.
• Given LMCs Γ : M → Set and Δ : N → Set, the functor

(Γ × Δ) (A,B) = Γ(A) × Δ(B)

carries the structure of an LMC onM ×N .
• If Γ : N → Set is an LMC onN , and F : M → N is a monoidal functor,
then the precomposition of Γ with F carries the structure of an MDO on
M:

M F−→ N Γ−→ Set

20/27

Lax Monoidal Copresheaves
A lax monoidal copresheaf (LMC) on a monoidal categoryM is a functor
M → Set equipped with coherent natural transformations:

ϵ : 1 → Γ(I) and (·) : Γ(A) × Γ(B) → Γ(A ⊗ B)

Examples/closure properties of LMCs:

• For any monoidal category (M , I, ⊗), the global sections functor

H𝑜𝑚(I,−) : M → Set

carries the structure of an LMC.
• A monoidMmay be regarded as a LMC on the terminal category {∗}.
• Given LMCs Γ : M → Set and Δ : N → Set, the functor

(Γ × Δ) (A,B) = Γ(A) × Δ(B)

carries the structure of an LMC onM ×N .
• If Γ : N → Set is an LMC onN , and F : M → N is a monoidal functor,
then the precomposition of Γ with F carries the structure of an MDO on
M:

M F−→ N Γ−→ Set

20/27

Lax Monoidal Copresheaves
A lax monoidal copresheaf (LMC) on a monoidal categoryM is a functor
M → Set equipped with coherent natural transformations:

ϵ : 1 → Γ(I) and (·) : Γ(A) × Γ(B) → Γ(A ⊗ B)

Examples/closure properties of LMCs:
• For any monoidal category (M , I, ⊗), the global sections functor

H𝑜𝑚(I,−) : M → Set

carries the structure of an LMC.

• A monoidMmay be regarded as a LMC on the terminal category {∗}.
• Given LMCs Γ : M → Set and Δ : N → Set, the functor

(Γ × Δ) (A,B) = Γ(A) × Δ(B)

carries the structure of an LMC onM ×N .
• If Γ : N → Set is an LMC onN , and F : M → N is a monoidal functor,
then the precomposition of Γ with F carries the structure of an MDO on
M:

M F−→ N Γ−→ Set

20/27

Lax Monoidal Copresheaves
A lax monoidal copresheaf (LMC) on a monoidal categoryM is a functor
M → Set equipped with coherent natural transformations:

ϵ : 1 → Γ(I) and (·) : Γ(A) × Γ(B) → Γ(A ⊗ B)

Examples/closure properties of LMCs:
• For any monoidal category (M , I, ⊗), the global sections functor

H𝑜𝑚(I,−) : M → Set

carries the structure of an LMC.
• A monoidMmay be regarded as a LMC on the terminal category {∗}.

• Given LMCs Γ : M → Set and Δ : N → Set, the functor

(Γ × Δ) (A,B) = Γ(A) × Δ(B)

carries the structure of an LMC onM ×N .
• If Γ : N → Set is an LMC onN , and F : M → N is a monoidal functor,
then the precomposition of Γ with F carries the structure of an MDO on
M:

M F−→ N Γ−→ Set

20/27

Lax Monoidal Copresheaves
A lax monoidal copresheaf (LMC) on a monoidal categoryM is a functor
M → Set equipped with coherent natural transformations:

ϵ : 1 → Γ(I) and (·) : Γ(A) × Γ(B) → Γ(A ⊗ B)

Examples/closure properties of LMCs:
• For any monoidal category (M , I, ⊗), the global sections functor

H𝑜𝑚(I,−) : M → Set

carries the structure of an LMC.
• A monoidMmay be regarded as a LMC on the terminal category {∗}.
• Given LMCs Γ : M → Set and Δ : N → Set, the functor

(Γ × Δ) (A,B) = Γ(A) × Δ(B)

carries the structure of an LMC onM ×N .

• If Γ : N → Set is an LMC onN , and F : M → N is a monoidal functor,
then the precomposition of Γ with F carries the structure of an MDO on
M:

M F−→ N Γ−→ Set

20/27

Lax Monoidal Copresheaves
A lax monoidal copresheaf (LMC) on a monoidal categoryM is a functor
M → Set equipped with coherent natural transformations:

ϵ : 1 → Γ(I) and (·) : Γ(A) × Γ(B) → Γ(A ⊗ B)

Examples/closure properties of LMCs:
• For any monoidal category (M , I, ⊗), the global sections functor

H𝑜𝑚(I,−) : M → Set

carries the structure of an LMC.
• A monoidMmay be regarded as a LMC on the terminal category {∗}.
• Given LMCs Γ : M → Set and Δ : N → Set, the functor

(Γ × Δ) (A,B) = Γ(A) × Δ(B)

carries the structure of an LMC onM ×N .
• If Γ : N → Set is an LMC onN , and F : M → N is a monoidal functor,
then the precomposition of Γ with F carries the structure of an MDO on
M:

M F−→ N Γ−→ Set

21/27

Categories of Relations
Let P : Set → Pos be the functor that takes a set S to its poset of subsets
P(S), ordered by inclusion.

Note that for any copresheaf Γ : C → Set, the composite

C Γ−→ Set P−→ Pos

is a C-indexed poset. Taking the Grothendieck construction of P ◦ Γ then
gives a category fibred over C

π :
∫ C

P ◦ Γ → C

This is equivalently (the projection onto C of) the full subcategory of the
comma category Set ↓ Γ (aka the Freyd Cover or Sieprinski Cone) spanned by
monic maps

PA ↣ Γ(A)

i.e. (unary) relations on Γ(A) for A ∈ C.
Call this the category of relations RelΓ of Γ.

21/27

Categories of Relations
Let P : Set → Pos be the functor that takes a set S to its poset of subsets
P(S), ordered by inclusion.
Note that for any copresheaf Γ : C → Set, the composite

C Γ−→ Set P−→ Pos

is a C-indexed poset.

Taking the Grothendieck construction of P ◦ Γ then
gives a category fibred over C

π :
∫ C

P ◦ Γ → C

This is equivalently (the projection onto C of) the full subcategory of the
comma category Set ↓ Γ (aka the Freyd Cover or Sieprinski Cone) spanned by
monic maps

PA ↣ Γ(A)

i.e. (unary) relations on Γ(A) for A ∈ C.
Call this the category of relations RelΓ of Γ.

21/27

Categories of Relations
Let P : Set → Pos be the functor that takes a set S to its poset of subsets
P(S), ordered by inclusion.
Note that for any copresheaf Γ : C → Set, the composite

C Γ−→ Set P−→ Pos

is a C-indexed poset. Taking the Grothendieck construction of P ◦ Γ then
gives a category fibred over C

π :
∫ C

P ◦ Γ → C

This is equivalently (the projection onto C of) the full subcategory of the
comma category Set ↓ Γ (aka the Freyd Cover or Sieprinski Cone) spanned by
monic maps

PA ↣ Γ(A)

i.e. (unary) relations on Γ(A) for A ∈ C.
Call this the category of relations RelΓ of Γ.

21/27

Categories of Relations
Let P : Set → Pos be the functor that takes a set S to its poset of subsets
P(S), ordered by inclusion.
Note that for any copresheaf Γ : C → Set, the composite

C Γ−→ Set P−→ Pos

is a C-indexed poset. Taking the Grothendieck construction of P ◦ Γ then
gives a category fibred over C

π :
∫ C

P ◦ Γ → C

This is equivalently (the projection onto C of) the full subcategory of the
comma category Set ↓ Γ (aka the Freyd Cover or Sieprinski Cone) spanned by
monic maps

PA ↣ Γ(A)

i.e. (unary) relations on Γ(A) for A ∈ C.

Call this the category of relations RelΓ of Γ.

21/27

Categories of Relations
Let P : Set → Pos be the functor that takes a set S to its poset of subsets
P(S), ordered by inclusion.
Note that for any copresheaf Γ : C → Set, the composite

C Γ−→ Set P−→ Pos

is a C-indexed poset. Taking the Grothendieck construction of P ◦ Γ then
gives a category fibred over C

π :
∫ C

P ◦ Γ → C

This is equivalently (the projection onto C of) the full subcategory of the
comma category Set ↓ Γ (aka the Freyd Cover or Sieprinski Cone) spanned by
monic maps

PA ↣ Γ(A)

i.e. (unary) relations on Γ(A) for A ∈ C.
Call this the category of relations RelΓ of Γ.

22/27

Day Convolution
Theorem (Day Convolution): given an LMC Γ : M → Set on a biclosed
monoidal categoryM , RelΓ carries the structure of a (strict) biclosed
monoidal category overM.

Proof sketch: Define a biclosed monoidal structure on RelΓ as follows:
• The monoidal unit is the pair (I, {ϵ})
• For A,B ∈ M with PA ⊆ Γ(A) and PB ⊆ Γ(B), the monoidal product

(A, PA) ⊗ (B, PB) is(
A ⊗ B,

{
𝑥 ∈ Γ(A ⊗ B) | ∃𝑎 ∈ PA, 𝑏 ∈ PB, 𝑥 = 𝑎 · 𝑏

})
• For A,B and PA, PB as above, the left closure (A, PA) _ (B, PB) is(

A _ B,
{
𝑓 ∈ Γ(A _ B) | ∀𝑎 ∈ PA, Γ(α) (𝑎 · 𝑓) ∈ PB

})
where α : A ⊗ (A _ B) → B is the counit of the adjunction

A ⊗ − ⊣ A _ −

• And similarly for the right closure.

22/27

Day Convolution
Theorem (Day Convolution): given an LMC Γ : M → Set on a biclosed
monoidal categoryM , RelΓ carries the structure of a (strict) biclosed
monoidal category overM.

Proof sketch: Define a biclosed monoidal structure on RelΓ as follows:

• The monoidal unit is the pair (I, {ϵ})
• For A,B ∈ M with PA ⊆ Γ(A) and PB ⊆ Γ(B), the monoidal product

(A, PA) ⊗ (B, PB) is(
A ⊗ B,

{
𝑥 ∈ Γ(A ⊗ B) | ∃𝑎 ∈ PA, 𝑏 ∈ PB, 𝑥 = 𝑎 · 𝑏

})
• For A,B and PA, PB as above, the left closure (A, PA) _ (B, PB) is(

A _ B,
{
𝑓 ∈ Γ(A _ B) | ∀𝑎 ∈ PA, Γ(α) (𝑎 · 𝑓) ∈ PB

})
where α : A ⊗ (A _ B) → B is the counit of the adjunction

A ⊗ − ⊣ A _ −

• And similarly for the right closure.

22/27

Day Convolution
Theorem (Day Convolution): given an LMC Γ : M → Set on a biclosed
monoidal categoryM , RelΓ carries the structure of a (strict) biclosed
monoidal category overM.

Proof sketch: Define a biclosed monoidal structure on RelΓ as follows:
• The monoidal unit is the pair (I, {ϵ})

• For A,B ∈ M with PA ⊆ Γ(A) and PB ⊆ Γ(B), the monoidal product
(A, PA) ⊗ (B, PB) is(

A ⊗ B,
{
𝑥 ∈ Γ(A ⊗ B) | ∃𝑎 ∈ PA, 𝑏 ∈ PB, 𝑥 = 𝑎 · 𝑏

})
• For A,B and PA, PB as above, the left closure (A, PA) _ (B, PB) is(

A _ B,
{
𝑓 ∈ Γ(A _ B) | ∀𝑎 ∈ PA, Γ(α) (𝑎 · 𝑓) ∈ PB

})
where α : A ⊗ (A _ B) → B is the counit of the adjunction

A ⊗ − ⊣ A _ −

• And similarly for the right closure.

22/27

Day Convolution
Theorem (Day Convolution): given an LMC Γ : M → Set on a biclosed
monoidal categoryM , RelΓ carries the structure of a (strict) biclosed
monoidal category overM.

Proof sketch: Define a biclosed monoidal structure on RelΓ as follows:
• The monoidal unit is the pair (I, {ϵ})
• For A,B ∈ M with PA ⊆ Γ(A) and PB ⊆ Γ(B), the monoidal product

(A, PA) ⊗ (B, PB) is(
A ⊗ B,

{
𝑥 ∈ Γ(A ⊗ B) | ∃𝑎 ∈ PA, 𝑏 ∈ PB, 𝑥 = 𝑎 · 𝑏

})

• For A,B and PA, PB as above, the left closure (A, PA) _ (B, PB) is(
A _ B,

{
𝑓 ∈ Γ(A _ B) | ∀𝑎 ∈ PA, Γ(α) (𝑎 · 𝑓) ∈ PB

})
where α : A ⊗ (A _ B) → B is the counit of the adjunction

A ⊗ − ⊣ A _ −

• And similarly for the right closure.

22/27

Day Convolution
Theorem (Day Convolution): given an LMC Γ : M → Set on a biclosed
monoidal categoryM , RelΓ carries the structure of a (strict) biclosed
monoidal category overM.

Proof sketch: Define a biclosed monoidal structure on RelΓ as follows:
• The monoidal unit is the pair (I, {ϵ})
• For A,B ∈ M with PA ⊆ Γ(A) and PB ⊆ Γ(B), the monoidal product

(A, PA) ⊗ (B, PB) is(
A ⊗ B,

{
𝑥 ∈ Γ(A ⊗ B) | ∃𝑎 ∈ PA, 𝑏 ∈ PB, 𝑥 = 𝑎 · 𝑏

})
• For A,B and PA, PB as above, the left closure (A, PA) _ (B, PB) is(

A _ B,
{
𝑓 ∈ Γ(A _ B) | ∀𝑎 ∈ PA, Γ(α) (𝑎 · 𝑓) ∈ PB

})
where α : A ⊗ (A _ B) → B is the counit of the adjunction

A ⊗ − ⊣ A _ −

• And similarly for the right closure.

22/27

Day Convolution
Theorem (Day Convolution): given an LMC Γ : M → Set on a biclosed
monoidal categoryM , RelΓ carries the structure of a (strict) biclosed
monoidal category overM.

Proof sketch: Define a biclosed monoidal structure on RelΓ as follows:
• The monoidal unit is the pair (I, {ϵ})
• For A,B ∈ M with PA ⊆ Γ(A) and PB ⊆ Γ(B), the monoidal product

(A, PA) ⊗ (B, PB) is(
A ⊗ B,

{
𝑥 ∈ Γ(A ⊗ B) | ∃𝑎 ∈ PA, 𝑏 ∈ PB, 𝑥 = 𝑎 · 𝑏

})
• For A,B and PA, PB as above, the left closure (A, PA) _ (B, PB) is(

A _ B,
{
𝑓 ∈ Γ(A _ B) | ∀𝑎 ∈ PA, Γ(α) (𝑎 · 𝑓) ∈ PB

})
where α : A ⊗ (A _ B) → B is the counit of the adjunction

A ⊗ − ⊣ A _ −

• And similarly for the right closure.

23/27

Putting it all together

Given a theory 𝕋 together with a type C in 𝕋 , and a monoidM together with
with a relation R ⊆ M × JCK, define Γ to be the following composite

Γ := SynλO𝑟𝑑 [X]
[C/X]
−−−−→ Syn𝕋

H𝑜𝑚Syn𝕋
(I,−)×M

−−−−−−−−−−−−−→ Set

By construction, this carries the structure of an LMC on SynλO𝑟𝑑 [X] .

Applying Day Convolution yields a biclosed monoidal structure on

π : RelΓ → SynλO𝑟𝑑 [X]

Moreover, we have (X,R) ∈ RelΓ. Hence there is a pointed biclosed monoidal
functor

⊩(−) : SynλO𝑟𝑑 [X] → RelΓ

23/27

Putting it all together

Given a theory 𝕋 together with a type C in 𝕋 , and a monoidM together with
with a relation R ⊆ M × JCK, define Γ to be the following composite

Γ := SynλO𝑟𝑑 [X]
[C/X]
−−−−→ Syn𝕋

H𝑜𝑚Syn𝕋
(I,−)×M

−−−−−−−−−−−−−→ Set

By construction, this carries the structure of an LMC on SynλO𝑟𝑑 [X] .

Applying Day Convolution yields a biclosed monoidal structure on

π : RelΓ → SynλO𝑟𝑑 [X]

Moreover, we have (X,R) ∈ RelΓ. Hence there is a pointed biclosed monoidal
functor

⊩(−) : SynλO𝑟𝑑 [X] → RelΓ

23/27

Putting it all together

Given a theory 𝕋 together with a type C in 𝕋 , and a monoidM together with
with a relation R ⊆ M × JCK, define Γ to be the following composite

Γ := SynλO𝑟𝑑 [X]
[C/X]
−−−−→ Syn𝕋

H𝑜𝑚Syn𝕋
(I,−)×M

−−−−−−−−−−−−−→ Set

By construction, this carries the structure of an LMC on SynλO𝑟𝑑 [X] .

Applying Day Convolution yields a biclosed monoidal structure on

π : RelΓ → SynλO𝑟𝑑 [X]

Moreover, we have (X,R) ∈ RelΓ. Hence there is a pointed biclosed monoidal
functor

⊩(−) : SynλO𝑟𝑑 [X] → RelΓ

23/27

Putting it all together

Given a theory 𝕋 together with a type C in 𝕋 , and a monoidM together with
with a relation R ⊆ M × JCK, define Γ to be the following composite

Γ := SynλO𝑟𝑑 [X]
[C/X]
−−−−→ Syn𝕋

H𝑜𝑚Syn𝕋
(I,−)×M

−−−−−−−−−−−−−→ Set

By construction, this carries the structure of an LMC on SynλO𝑟𝑑 [X] .

Applying Day Convolution yields a biclosed monoidal structure on

π : RelΓ → SynλO𝑟𝑑 [X]

Moreover, we have (X,R) ∈ RelΓ. Hence there is a pointed biclosed monoidal
functor

⊩(−) : SynλO𝑟𝑑 [X] → RelΓ

24/27

Putting it all together

Hence the composite π ◦ ⊩(−) : SynλO𝑟𝑑 [X] → SynλO𝑟𝑑 [X] is also a pointed
biclosed monoidal functor. But since SynλO𝑟𝑑 [X] is the initial pointed biclosed
monoidal category it follows that this must be the identity on SynλO𝑟𝑑 [X] , i.e.

SynλO𝑟𝑑 [X] RelΓ

SynλO𝑟𝑑 [X]

⊩(−)

π

Unpacking this, by functoriality of ⊩(−) , for all 𝑓 : A[X] → B[X] ∈ SynλO𝑟𝑑 [X]
we have that

P(Γ(𝑓)) (⊩A[X]) ⊆ ⊩B[X]

i.e.
∀𝑚 ∈ M, 𝑎 ∈ H𝑜𝑚(1,A[C]), if 𝑚 ⊩A[X] 𝑎 then 𝑚 ⊩B[X] 𝑓 ◦ 𝑎

which precisely FLTR.

24/27

Putting it all together

Hence the composite π ◦ ⊩(−) : SynλO𝑟𝑑 [X] → SynλO𝑟𝑑 [X] is also a pointed
biclosed monoidal functor. But since SynλO𝑟𝑑 [X] is the initial pointed biclosed
monoidal category it follows that this must be the identity on SynλO𝑟𝑑 [X] , i.e.

SynλO𝑟𝑑 [X] RelΓ

SynλO𝑟𝑑 [X]

⊩(−)

π

Unpacking this, by functoriality of ⊩(−) , for all 𝑓 : A[X] → B[X] ∈ SynλO𝑟𝑑 [X]
we have that

P(Γ(𝑓)) (⊩A[X]) ⊆ ⊩B[X]

i.e.
∀𝑚 ∈ M, 𝑎 ∈ H𝑜𝑚(1,A[C]), if 𝑚 ⊩A[X] 𝑎 then 𝑚 ⊩B[X] 𝑓 ◦ 𝑎

which precisely FLTR.

24/27

Putting it all together

Hence the composite π ◦ ⊩(−) : SynλO𝑟𝑑 [X] → SynλO𝑟𝑑 [X] is also a pointed
biclosed monoidal functor. But since SynλO𝑟𝑑 [X] is the initial pointed biclosed
monoidal category it follows that this must be the identity on SynλO𝑟𝑑 [X] , i.e.

SynλO𝑟𝑑 [X] RelΓ

SynλO𝑟𝑑 [X]

⊩(−)

π

Unpacking this, by functoriality of ⊩(−) , for all 𝑓 : A[X] → B[X] ∈ SynλO𝑟𝑑 [X]
we have that

P(Γ(𝑓)) (⊩A[X]) ⊆ ⊩B[X]

i.e.
∀𝑚 ∈ M, 𝑎 ∈ H𝑜𝑚(1,A[C]), if 𝑚 ⊩A[X] 𝑎 then 𝑚 ⊩B[X] 𝑓 ◦ 𝑎

which precisely FLTR.

24/27

Putting it all together

Hence the composite π ◦ ⊩(−) : SynλO𝑟𝑑 [X] → SynλO𝑟𝑑 [X] is also a pointed
biclosed monoidal functor. But since SynλO𝑟𝑑 [X] is the initial pointed biclosed
monoidal category it follows that this must be the identity on SynλO𝑟𝑑 [X] , i.e.

SynλO𝑟𝑑 [X] RelΓ

SynλO𝑟𝑑 [X]

⊩(−)

π

Unpacking this, by functoriality of ⊩(−) , for all 𝑓 : A[X] → B[X] ∈ SynλO𝑟𝑑 [X]
we have that

P(Γ(𝑓)) (⊩A[X]) ⊆ ⊩B[X]

i.e.
∀𝑚 ∈ M, 𝑎 ∈ H𝑜𝑚(1,A[C]), if 𝑚 ⊩A[X] 𝑎 then 𝑚 ⊩B[X] 𝑓 ◦ 𝑎

which precisely FLTR.

25/27

A Recipe for Logical Relations

To define logical relations and prove FTLR for a given type theory 𝕋

1 Show that Syn𝕋 is the initial object in some category of structured
categories C.

2 For a suitably-chosen functor Γ : Syn𝕋 → Set and category of relations
RelΓ ↩→ Set ↓ Γ, show that RelΓ is also an object of C over Syn𝕋 via the
projection Rel𝕋 → Syn𝕋 .

3 Derive FTLR from the existence of a section of this projection, which
follows from initiality of Syn𝕋 as below:

Syn𝕋 RelΓ

Syn𝕋

25/27

A Recipe for Logical Relations

To define logical relations and prove FTLR for a given type theory 𝕋
1 Show that Syn𝕋 is the initial object in some category of structured
categories C.

2 For a suitably-chosen functor Γ : Syn𝕋 → Set and category of relations
RelΓ ↩→ Set ↓ Γ, show that RelΓ is also an object of C over Syn𝕋 via the
projection Rel𝕋 → Syn𝕋 .

3 Derive FTLR from the existence of a section of this projection, which
follows from initiality of Syn𝕋 as below:

Syn𝕋 RelΓ

Syn𝕋

25/27

A Recipe for Logical Relations

To define logical relations and prove FTLR for a given type theory 𝕋
1 Show that Syn𝕋 is the initial object in some category of structured
categories C.

2 For a suitably-chosen functor Γ : Syn𝕋 → Set and category of relations
RelΓ ↩→ Set ↓ Γ, show that RelΓ is also an object of C over Syn𝕋 via the
projection Rel𝕋 → Syn𝕋 .

3 Derive FTLR from the existence of a section of this projection, which
follows from initiality of Syn𝕋 as below:

Syn𝕋 RelΓ

Syn𝕋

25/27

A Recipe for Logical Relations

To define logical relations and prove FTLR for a given type theory 𝕋
1 Show that Syn𝕋 is the initial object in some category of structured
categories C.

2 For a suitably-chosen functor Γ : Syn𝕋 → Set and category of relations
RelΓ ↩→ Set ↓ Γ, show that RelΓ is also an object of C over Syn𝕋 via the
projection Rel𝕋 → Syn𝕋 .

3 Derive FTLR from the existence of a section of this projection, which
follows from initiality of Syn𝕋 as below:

Syn𝕋 RelΓ

Syn𝕋

26/27

Conclusion

Category theory provides a general and powerfully simplifying language for
logical relations. In this talk, we have seen how this method can be used to
handle logical relations for substructural λ-calculus, but the applications of
this method are seemingly without limit.

E.g., the categorical semantics of dependent type theory can be used to extend
logical relations to systems with dependent types, and so on.

Several questions remain, however:
1 What makes the Day Convolution structure on a category of relations the
“right” one for logical relations/parametricity on biclosed monoidal
categories? Can we characterize this with a universal property?

• If you’re interested in this, ask me about it—I have thoughts!

2 How do the forms of external parametricity considered in this talk relate
to type theories with internal parametricity and their categorical
semantics? (Next time!)

26/27

Conclusion

Category theory provides a general and powerfully simplifying language for
logical relations. In this talk, we have seen how this method can be used to
handle logical relations for substructural λ-calculus, but the applications of
this method are seemingly without limit.

E.g., the categorical semantics of dependent type theory can be used to extend
logical relations to systems with dependent types, and so on.

Several questions remain, however:
1 What makes the Day Convolution structure on a category of relations the
“right” one for logical relations/parametricity on biclosed monoidal
categories? Can we characterize this with a universal property?

• If you’re interested in this, ask me about it—I have thoughts!

2 How do the forms of external parametricity considered in this talk relate
to type theories with internal parametricity and their categorical
semantics? (Next time!)

26/27

Conclusion

Category theory provides a general and powerfully simplifying language for
logical relations. In this talk, we have seen how this method can be used to
handle logical relations for substructural λ-calculus, but the applications of
this method are seemingly without limit.

E.g., the categorical semantics of dependent type theory can be used to extend
logical relations to systems with dependent types, and so on.

Several questions remain, however:

1 What makes the Day Convolution structure on a category of relations the
“right” one for logical relations/parametricity on biclosed monoidal
categories? Can we characterize this with a universal property?

• If you’re interested in this, ask me about it—I have thoughts!

2 How do the forms of external parametricity considered in this talk relate
to type theories with internal parametricity and their categorical
semantics? (Next time!)

26/27

Conclusion

Category theory provides a general and powerfully simplifying language for
logical relations. In this talk, we have seen how this method can be used to
handle logical relations for substructural λ-calculus, but the applications of
this method are seemingly without limit.

E.g., the categorical semantics of dependent type theory can be used to extend
logical relations to systems with dependent types, and so on.

Several questions remain, however:
1 What makes the Day Convolution structure on a category of relations the
“right” one for logical relations/parametricity on biclosed monoidal
categories? Can we characterize this with a universal property?

• If you’re interested in this, ask me about it—I have thoughts!

2 How do the forms of external parametricity considered in this talk relate
to type theories with internal parametricity and their categorical
semantics? (Next time!)

26/27

Conclusion

Category theory provides a general and powerfully simplifying language for
logical relations. In this talk, we have seen how this method can be used to
handle logical relations for substructural λ-calculus, but the applications of
this method are seemingly without limit.

E.g., the categorical semantics of dependent type theory can be used to extend
logical relations to systems with dependent types, and so on.

Several questions remain, however:
1 What makes the Day Convolution structure on a category of relations the
“right” one for logical relations/parametricity on biclosed monoidal
categories? Can we characterize this with a universal property?

• If you’re interested in this, ask me about it—I have thoughts!

2 How do the forms of external parametricity considered in this talk relate
to type theories with internal parametricity and their categorical
semantics? (Next time!)

26/27

Conclusion

Category theory provides a general and powerfully simplifying language for
logical relations. In this talk, we have seen how this method can be used to
handle logical relations for substructural λ-calculus, but the applications of
this method are seemingly without limit.

E.g., the categorical semantics of dependent type theory can be used to extend
logical relations to systems with dependent types, and so on.

Several questions remain, however:
1 What makes the Day Convolution structure on a category of relations the
“right” one for logical relations/parametricity on biclosed monoidal
categories? Can we characterize this with a universal property?

• If you’re interested in this, ask me about it—I have thoughts!

2 How do the forms of external parametricity considered in this talk relate
to type theories with internal parametricity and their categorical
semantics? (Next time!)

27/27

9NAB8 Thank you! 8CAM:

	Part 1: The What
	Part 2: The How

