
1/30

9N Fundamental Theorems for Free M:
Logical Relations & Parametricity

for Substructural Type Systems and Beyond

T Corinthia Beatrix Aberlé (she/her) U

December 10, 2024

2/30

What is a Logical Relation?

Logical relations are a powerful proof technique that can be used to
prove properties of type systems such as normalization, canonicity, and

parametricity, that typically evade straightforward proof by induction.

But what is a logical relation?

The usual way of introducing logical relations is by example, with the term
“logical relations” being applied to anything that sufficiently resembles other
logical relations arguments, rather than having a precise definition.

This lack of precision makes for difficulty in extending logical relations
arguments to novel type systems, since there is not a clear standard by which
to judge whether the relations one defines are the “right” ones.

In this talk, I will first sketch some of my own recent work on developing
logical relations to prove parametricity theorems for substructural type
systems, using this as a jumping-off point to discuss a more general recipe for
logical relations, based on category theory, that can be used to derive these
and other examples.

2/30

What is a Logical Relation?

Logical relations are a powerful proof technique that can be used to
prove properties of type systems such as normalization, canonicity, and

parametricity, that typically evade straightforward proof by induction.

But what is a logical relation?

The usual way of introducing logical relations is by example, with the term
“logical relations” being applied to anything that sufficiently resembles other
logical relations arguments, rather than having a precise definition.

This lack of precision makes for difficulty in extending logical relations
arguments to novel type systems, since there is not a clear standard by which
to judge whether the relations one defines are the “right” ones.

In this talk, I will first sketch some of my own recent work on developing
logical relations to prove parametricity theorems for substructural type
systems, using this as a jumping-off point to discuss a more general recipe for
logical relations, based on category theory, that can be used to derive these
and other examples.

2/30

What is a Logical Relation?

Logical relations are a powerful proof technique that can be used to
prove properties of type systems such as normalization, canonicity, and

parametricity, that typically evade straightforward proof by induction.

But what is a logical relation?

The usual way of introducing logical relations is by example, with the term
“logical relations” being applied to anything that sufficiently resembles other
logical relations arguments, rather than having a precise definition.

This lack of precision makes for difficulty in extending logical relations
arguments to novel type systems, since there is not a clear standard by which
to judge whether the relations one defines are the “right” ones.

In this talk, I will first sketch some of my own recent work on developing
logical relations to prove parametricity theorems for substructural type
systems, using this as a jumping-off point to discuss a more general recipe for
logical relations, based on category theory, that can be used to derive these
and other examples.

2/30

What is a Logical Relation?

Logical relations are a powerful proof technique that can be used to
prove properties of type systems such as normalization, canonicity, and

parametricity, that typically evade straightforward proof by induction.

But what is a logical relation?

The usual way of introducing logical relations is by example, with the term
“logical relations” being applied to anything that sufficiently resembles other
logical relations arguments, rather than having a precise definition.

This lack of precision makes for difficulty in extending logical relations
arguments to novel type systems, since there is not a clear standard by which
to judge whether the relations one defines are the “right” ones.

In this talk, I will first sketch some of my own recent work on developing
logical relations to prove parametricity theorems for substructural type
systems, using this as a jumping-off point to discuss a more general recipe for
logical relations, based on category theory, that can be used to derive these
and other examples.

2/30

What is a Logical Relation?

Logical relations are a powerful proof technique that can be used to
prove properties of type systems such as normalization, canonicity, and

parametricity, that typically evade straightforward proof by induction.

But what is a logical relation?

The usual way of introducing logical relations is by example, with the term
“logical relations” being applied to anything that sufficiently resembles other
logical relations arguments, rather than having a precise definition.

This lack of precision makes for difficulty in extending logical relations
arguments to novel type systems, since there is not a clear standard by which
to judge whether the relations one defines are the “right” ones.

In this talk, I will first sketch some of my own recent work on developing
logical relations to prove parametricity theorems for substructural type
systems, using this as a jumping-off point to discuss a more general recipe for
logical relations, based on category theory, that can be used to derive these
and other examples.

3/30

Recap: Simply-Typed λ-Calculus
Our starting point for most of the type systems considered in this talk will be
the Simply-Typed λ-Calculus with both function and pair types:

1 Type
A Type B Type

A × B Type

A Type B Type

A→ B Type

Γ, 𝑥 : A,Γ′ ⊢ 𝑥 : A Γ ⊢ () : 1

Γ ⊢ 𝑎 : A Γ ⊢ 𝑏 : B
Γ ⊢ (𝑎, 𝑏) : A × B

Γ ⊢ 𝑝 : A × B
Γ ⊢ π1 (𝑝) : A

Γ ⊢ 𝑝 : A × B
Γ ⊢ π2 (𝑝) : B

Γ, 𝑥 : A ⊢ 𝑓 : B
Γ ⊢ λ𝑥.𝑓 : A→ B

Γ ⊢ 𝑓 : A→ B Γ ⊢ 𝑎 : A
Γ ⊢ 𝑓 (𝑎) : B

π1 (𝑎, 𝑏) ≡A 𝑎 π2 (𝑎, 𝑏) ≡B 𝑏 𝑝 ≡A×B (π1 (𝑝), π2 (𝑝))

(λ𝑥.𝑓) (𝑎) ≡B 𝑓 [𝑎/𝑥] 𝑓 ≡A→B λ𝑥.𝑓 (𝑥) 𝑢 ≡1 ()

4/30

Example 1: System T
System T extends simply-typed λ-calculus with a type of natural numbers:

ℕ Type Γ ⊢ 0 : ℕ
Γ ⊢ 𝑛 : ℕ

Γ ⊢ s(𝑛) : ℕ

Γ ⊢ 𝑛 : ℕ Γ ⊢ 𝑎0 : A Γ, 𝑥 : ℕ, 𝑦 : A ⊢ 𝑎1 : A
Γ ⊢ rec 𝑛 {0 ↦→ 𝑎0 | s(𝑥), 𝑦 ↦→ 𝑎1} : A

rec 0 {0 ↦→ 𝑎0 | . . . } ≡A 𝑎0

rec s(𝑛) {· · · | s(𝑥), 𝑦 ↦→ 𝑎1} ≡A 𝑎1 [𝑛/𝑥, rec 𝑛 {. . . }/𝑦]

For any natural number 𝑚, let 𝑚 : ℕ be defined inductively as follows:

0 = 0
𝑚 + 1 = s(𝑚)

4/30

Example 1: System T
System T extends simply-typed λ-calculus with a type of natural numbers:

ℕ Type Γ ⊢ 0 : ℕ
Γ ⊢ 𝑛 : ℕ

Γ ⊢ s(𝑛) : ℕ

Γ ⊢ 𝑛 : ℕ Γ ⊢ 𝑎0 : A Γ, 𝑥 : ℕ, 𝑦 : A ⊢ 𝑎1 : A
Γ ⊢ rec 𝑛 {0 ↦→ 𝑎0 | s(𝑥), 𝑦 ↦→ 𝑎1} : A

rec 0 {0 ↦→ 𝑎0 | . . . } ≡A 𝑎0

rec s(𝑛) {· · · | s(𝑥), 𝑦 ↦→ 𝑎1} ≡A 𝑎1 [𝑛/𝑥, rec 𝑛 {. . . }/𝑦]

For any natural number 𝑚, let 𝑚 : ℕ be defined inductively as follows:

0 = 0
𝑚 + 1 = s(𝑚)

5/30

Canonicity for System T
Theorem (Canonicity): for every closed term 𝑛 : ℕ, there exists a natural
number 𝑚 such that 𝑛 ≡ℕ 𝑚.

For each τ Type in System T, let JτK be the set of closed terms of type τ,
quotiented up to definitional equality ≡τ .
Then for each τ Type, define a predicate ℙτ ⊆ JτK, as follows:

ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ℕ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))
ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

J−K and ℙ straightforwardly lift to contexts Γ in addition to types τ.

Fundamental Theorem (FTLR): for every Γ ⊢ 𝑎 : A and γ : Γ

if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem.

5/30

Canonicity for System T
Theorem (Canonicity): for every closed term 𝑛 : ℕ, there exists a natural
number 𝑚 such that 𝑛 ≡ℕ 𝑚.

For each τ Type in System T, let JτK be the set of closed terms of type τ,
quotiented up to definitional equality ≡τ .

Then for each τ Type, define a predicate ℙτ ⊆ JτK, as follows:

ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ℕ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))
ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

J−K and ℙ straightforwardly lift to contexts Γ in addition to types τ.

Fundamental Theorem (FTLR): for every Γ ⊢ 𝑎 : A and γ : Γ

if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem.

5/30

Canonicity for System T
Theorem (Canonicity): for every closed term 𝑛 : ℕ, there exists a natural
number 𝑚 such that 𝑛 ≡ℕ 𝑚.

For each τ Type in System T, let JτK be the set of closed terms of type τ,
quotiented up to definitional equality ≡τ .
Then for each τ Type, define a predicate ℙτ ⊆ JτK, as follows:

ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ℕ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))
ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

J−K and ℙ straightforwardly lift to contexts Γ in addition to types τ.

Fundamental Theorem (FTLR): for every Γ ⊢ 𝑎 : A and γ : Γ

if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem.

5/30

Canonicity for System T
Theorem (Canonicity): for every closed term 𝑛 : ℕ, there exists a natural
number 𝑚 such that 𝑛 ≡ℕ 𝑚.

For each τ Type in System T, let JτK be the set of closed terms of type τ,
quotiented up to definitional equality ≡τ .
Then for each τ Type, define a predicate ℙτ ⊆ JτK, as follows:

ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ℕ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))
ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

J−K and ℙ straightforwardly lift to contexts Γ in addition to types τ.

Fundamental Theorem (FTLR): for every Γ ⊢ 𝑎 : A and γ : Γ

if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem.

5/30

Canonicity for System T
Theorem (Canonicity): for every closed term 𝑛 : ℕ, there exists a natural
number 𝑚 such that 𝑛 ≡ℕ 𝑚.

For each τ Type in System T, let JτK be the set of closed terms of type τ,
quotiented up to definitional equality ≡τ .
Then for each τ Type, define a predicate ℙτ ⊆ JτK, as follows:

ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ℕ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))
ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

J−K and ℙ straightforwardly lift to contexts Γ in addition to types τ.

Fundamental Theorem (FTLR): for every Γ ⊢ 𝑎 : A and γ : Γ

if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem.

5/30

Canonicity for System T
Theorem (Canonicity): for every closed term 𝑛 : ℕ, there exists a natural
number 𝑚 such that 𝑛 ≡ℕ 𝑚.

For each τ Type in System T, let JτK be the set of closed terms of type τ,
quotiented up to definitional equality ≡τ .
Then for each τ Type, define a predicate ℙτ ⊆ JτK, as follows:

ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ℕ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))
ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

J−K and ℙ straightforwardly lift to contexts Γ in addition to types τ.

Fundamental Theorem (FTLR): for every Γ ⊢ 𝑎 : A and γ : Γ

if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem.

5/30

Canonicity for System T
Theorem (Canonicity): for every closed term 𝑛 : ℕ, there exists a natural
number 𝑚 such that 𝑛 ≡ℕ 𝑚.

For each τ Type in System T, let JτK be the set of closed terms of type τ,
quotiented up to definitional equality ≡τ .
Then for each τ Type, define a predicate ℙτ ⊆ JτK, as follows:

ℙℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ℕ 𝑚

ℙA×B (𝑝) ⇐⇒ ℙA (π1 (𝑝)) and ℙB (π2 (𝑝))
ℙA→B (𝑓) ⇐⇒ ∀𝑎 ∈ JAK.ℙA (𝑎) =⇒ ℙB (𝑓 (𝑎))

J−K and ℙ straightforwardly lift to contexts Γ in addition to types τ.

Fundamental Theorem (FTLR): for every Γ ⊢ 𝑎 : A and γ : Γ

if ℙΓ (γ) then ℙA (𝑎[γ/Γ])

Proof: induction on derivations.

Canonicity then follows as a corollary of the fundamental theorem.

6/30

Example 2: Polymorphism & System F

System F extends simply-typed λ-calculus with parametric polymorphism:

Δ,X,Δ′ | X Type

Δ,X | A Type

Δ | ∀X.A Type

Δ,X | Γ ⊢ 𭟋 : A

Δ | Γ ⊢ ΛX.𭟋 : ∀X.A
Δ | Γ ⊢ 𭟋 : ∀X : A Δ | B Type

Δ | Γ ⊢ 𭟋[B] : A[B/X]

Intuitively, Polymorphic functions in System F can’t inspect the types over
which they are defined and so must behave uniformly for all types at which
they are instantiated. But how to make this idea precise?

Reynolds (1983): Polymorphic functions should preserve all
predicates/relations definable on closed types.

This idea is then made precise using a logical relations construction.

6/30

Example 2: Polymorphism & System F

System F extends simply-typed λ-calculus with parametric polymorphism:

Δ,X,Δ′ | X Type

Δ,X | A Type

Δ | ∀X.A Type

Δ,X | Γ ⊢ 𭟋 : A

Δ | Γ ⊢ ΛX.𭟋 : ∀X.A
Δ | Γ ⊢ 𭟋 : ∀X : A Δ | B Type

Δ | Γ ⊢ 𭟋[B] : A[B/X]

Intuitively, Polymorphic functions in System F can’t inspect the types over
which they are defined and so must behave uniformly for all types at which
they are instantiated. But how to make this idea precise?

Reynolds (1983): Polymorphic functions should preserve all
predicates/relations definable on closed types.

This idea is then made precise using a logical relations construction.

6/30

Example 2: Polymorphism & System F

System F extends simply-typed λ-calculus with parametric polymorphism:

Δ,X,Δ′ | X Type

Δ,X | A Type

Δ | ∀X.A Type

Δ,X | Γ ⊢ 𭟋 : A

Δ | Γ ⊢ ΛX.𭟋 : ∀X.A
Δ | Γ ⊢ 𭟋 : ∀X : A Δ | B Type

Δ | Γ ⊢ 𭟋[B] : A[B/X]

Intuitively, Polymorphic functions in System F can’t inspect the types over
which they are defined and so must behave uniformly for all types at which
they are instantiated. But how to make this idea precise?

Reynolds (1983): Polymorphic functions should preserve all
predicates/relations definable on closed types.

This idea is then made precise using a logical relations construction.

6/30

Example 2: Polymorphism & System F

System F extends simply-typed λ-calculus with parametric polymorphism:

Δ,X,Δ′ | X Type

Δ,X | A Type

Δ | ∀X.A Type

Δ,X | Γ ⊢ 𭟋 : A

Δ | Γ ⊢ ΛX.𭟋 : ∀X.A
Δ | Γ ⊢ 𭟋 : ∀X : A Δ | B Type

Δ | Γ ⊢ 𭟋[B] : A[B/X]

Intuitively, Polymorphic functions in System F can’t inspect the types over
which they are defined and so must behave uniformly for all types at which
they are instantiated. But how to make this idea precise?

Reynolds (1983): Polymorphic functions should preserve all
predicates/relations definable on closed types.

This idea is then made precise using a logical relations construction.

7/30

(Unary) Parametricity for System F
For each System F type X1, . . . ,X𝑛 | A Type, given types B1, . . . ,B𝑛 and
predicates P𝑖 ⊆ JB𝑖K for 𝑖 = 1, . . . , 𝑛, define a predicate

ℙ
X𝑖 ↦→P𝑖
A ⊆ JA[B1/X1, . . . ,B𝑛/X𝑛]K

as follows:

ℙ
X𝑖 ↦→P𝑖
X𝑗

(𝑥) ⇐⇒ P𝑗 (𝑥)

ℙ
X𝑖 ↦→P𝑖
1 (𝑢) ⇐⇒ 𝑢 ≡1 ()

ℙ
X𝑖 ↦→P𝑖
A×B (𝑝) ⇐⇒ ℙ

X𝑖 ↦→P𝑖
A (π1 (𝑝)) and ℙX𝑖 ↦→P𝑖

B (π2 (𝑝))

ℙ
X𝑖 ↦→P𝑖
A→B (𝑓) ⇐⇒ ∀𝑎 : A. ℙX𝑖 ↦→P𝑖

A (𝑎) =⇒ ℙ
X𝑖 ↦→P𝑖
B (𝑓 (𝑎))

ℙ
X𝑖 ↦→P𝑖
∀X.A (𭟋) ⇐⇒ ∀B Type, P ⊆ JBK. ℙX𝑖 ↦→P𝑖 , X ↦→P

A (𭟋[B])

FTLR: for all X1, . . . ,X𝑛 | Γ ⊢ 𝑎 : A, given closed types B1, . . . ,B𝑛 with
predicates P1, . . . , P𝑛 as above, and γ : Γ

if ℙ
X𝑖 ↦→P𝑖
Γ (γ) then ℙ

X𝑖 ↦→P𝑖
A (𝑎[γ/Γ])

7/30

(Unary) Parametricity for System F
For each System F type X1, . . . ,X𝑛 | A Type, given types B1, . . . ,B𝑛 and
predicates P𝑖 ⊆ JB𝑖K for 𝑖 = 1, . . . , 𝑛, define a predicate

ℙ
X𝑖 ↦→P𝑖
A ⊆ JA[B1/X1, . . . ,B𝑛/X𝑛]K

as follows:

ℙ
X𝑖 ↦→P𝑖
X𝑗

(𝑥) ⇐⇒ P𝑗 (𝑥)

ℙ
X𝑖 ↦→P𝑖
1 (𝑢) ⇐⇒ 𝑢 ≡1 ()

ℙ
X𝑖 ↦→P𝑖
A×B (𝑝) ⇐⇒ ℙ

X𝑖 ↦→P𝑖
A (π1 (𝑝)) and ℙX𝑖 ↦→P𝑖

B (π2 (𝑝))

ℙ
X𝑖 ↦→P𝑖
A→B (𝑓) ⇐⇒ ∀𝑎 : A. ℙX𝑖 ↦→P𝑖

A (𝑎) =⇒ ℙ
X𝑖 ↦→P𝑖
B (𝑓 (𝑎))

ℙ
X𝑖 ↦→P𝑖
∀X.A (𭟋) ⇐⇒ ∀B Type, P ⊆ JBK. ℙX𝑖 ↦→P𝑖 , X ↦→P

A (𭟋[B])

FTLR: for all X1, . . . ,X𝑛 | Γ ⊢ 𝑎 : A, given closed types B1, . . . ,B𝑛 with
predicates P1, . . . , P𝑛 as above, and γ : Γ

if ℙ
X𝑖 ↦→P𝑖
Γ (γ) then ℙ

X𝑖 ↦→P𝑖
A (𝑎[γ/Γ])

7/30

(Unary) Parametricity for System F
For each System F type X1, . . . ,X𝑛 | A Type, given types B1, . . . ,B𝑛 and
predicates P𝑖 ⊆ JB𝑖K for 𝑖 = 1, . . . , 𝑛, define a predicate

ℙ
X𝑖 ↦→P𝑖
A ⊆ JA[B1/X1, . . . ,B𝑛/X𝑛]K

as follows:

ℙ
X𝑖 ↦→P𝑖
X𝑗

(𝑥) ⇐⇒ P𝑗 (𝑥)

ℙ
X𝑖 ↦→P𝑖
1 (𝑢) ⇐⇒ 𝑢 ≡1 ()

ℙ
X𝑖 ↦→P𝑖
A×B (𝑝) ⇐⇒ ℙ

X𝑖 ↦→P𝑖
A (π1 (𝑝)) and ℙX𝑖 ↦→P𝑖

B (π2 (𝑝))

ℙ
X𝑖 ↦→P𝑖
A→B (𝑓) ⇐⇒ ∀𝑎 : A. ℙX𝑖 ↦→P𝑖

A (𝑎) =⇒ ℙ
X𝑖 ↦→P𝑖
B (𝑓 (𝑎))

ℙ
X𝑖 ↦→P𝑖
∀X.A (𭟋) ⇐⇒ ∀B Type, P ⊆ JBK. ℙX𝑖 ↦→P𝑖 , X ↦→P

A (𭟋[B])

FTLR: for all X1, . . . ,X𝑛 | Γ ⊢ 𝑎 : A, given closed types B1, . . . ,B𝑛 with
predicates P1, . . . , P𝑛 as above, and γ : Γ

if ℙ
X𝑖 ↦→P𝑖
Γ (γ) then ℙ

X𝑖 ↦→P𝑖
A (𝑎[γ/Γ])

8/30

Consequences of Parametricity, part 1

The Old Chestnut: every closed term α : ∀X.X→ X is extensionally
equivalent to the polymorphic identity function ΛX.λ𝑥.𝑥.

Proof:

• By parametricity, we know ℙ∀X.X→X (α).
• So ℙX ↦→P

X→X (α[A]) for all closed types A Type and P ⊆ JAK.
• Therefore ℙX ↦→P

X (α[A] (𝑎)) – i.e. P(α[A] (𝑎)) – for all 𝑎 : A such that P(𝑎).
• Hence for any closed type A and 𝑎 : A, we can define P ⊆ JAK by P = {𝑎}.
By construction 𝑏 ∈ P ⇐⇒ 𝑏 ≡A 𝑎, and so by the above it follows that
α[A] (𝑎) ≡A 𝑎.

8/30

Consequences of Parametricity, part 1

The Old Chestnut: every closed term α : ∀X.X→ X is extensionally
equivalent to the polymorphic identity function ΛX.λ𝑥.𝑥.

Proof:

• By parametricity, we know ℙ∀X.X→X (α).
• So ℙX ↦→P

X→X (α[A]) for all closed types A Type and P ⊆ JAK.
• Therefore ℙX ↦→P

X (α[A] (𝑎)) – i.e. P(α[A] (𝑎)) – for all 𝑎 : A such that P(𝑎).
• Hence for any closed type A and 𝑎 : A, we can define P ⊆ JAK by P = {𝑎}.
By construction 𝑏 ∈ P ⇐⇒ 𝑏 ≡A 𝑎, and so by the above it follows that
α[A] (𝑎) ≡A 𝑎.

8/30

Consequences of Parametricity, part 1

The Old Chestnut: every closed term α : ∀X.X→ X is extensionally
equivalent to the polymorphic identity function ΛX.λ𝑥.𝑥.

Proof:
• By parametricity, we know ℙ∀X.X→X (α).

• So ℙX ↦→P
X→X (α[A]) for all closed types A Type and P ⊆ JAK.

• Therefore ℙX ↦→P
X (α[A] (𝑎)) – i.e. P(α[A] (𝑎)) – for all 𝑎 : A such that P(𝑎).

• Hence for any closed type A and 𝑎 : A, we can define P ⊆ JAK by P = {𝑎}.
By construction 𝑏 ∈ P ⇐⇒ 𝑏 ≡A 𝑎, and so by the above it follows that
α[A] (𝑎) ≡A 𝑎.

8/30

Consequences of Parametricity, part 1

The Old Chestnut: every closed term α : ∀X.X→ X is extensionally
equivalent to the polymorphic identity function ΛX.λ𝑥.𝑥.

Proof:
• By parametricity, we know ℙ∀X.X→X (α).
• So ℙX ↦→P

X→X (α[A]) for all closed types A Type and P ⊆ JAK.

• Therefore ℙX ↦→P
X (α[A] (𝑎)) – i.e. P(α[A] (𝑎)) – for all 𝑎 : A such that P(𝑎).

• Hence for any closed type A and 𝑎 : A, we can define P ⊆ JAK by P = {𝑎}.
By construction 𝑏 ∈ P ⇐⇒ 𝑏 ≡A 𝑎, and so by the above it follows that
α[A] (𝑎) ≡A 𝑎.

8/30

Consequences of Parametricity, part 1

The Old Chestnut: every closed term α : ∀X.X→ X is extensionally
equivalent to the polymorphic identity function ΛX.λ𝑥.𝑥.

Proof:
• By parametricity, we know ℙ∀X.X→X (α).
• So ℙX ↦→P

X→X (α[A]) for all closed types A Type and P ⊆ JAK.
• Therefore ℙX ↦→P

X (α[A] (𝑎)) – i.e. P(α[A] (𝑎)) – for all 𝑎 : A such that P(𝑎).

• Hence for any closed type A and 𝑎 : A, we can define P ⊆ JAK by P = {𝑎}.
By construction 𝑏 ∈ P ⇐⇒ 𝑏 ≡A 𝑎, and so by the above it follows that
α[A] (𝑎) ≡A 𝑎.

8/30

Consequences of Parametricity, part 1

The Old Chestnut: every closed term α : ∀X.X→ X is extensionally
equivalent to the polymorphic identity function ΛX.λ𝑥.𝑥.

Proof:
• By parametricity, we know ℙ∀X.X→X (α).
• So ℙX ↦→P

X→X (α[A]) for all closed types A Type and P ⊆ JAK.
• Therefore ℙX ↦→P

X (α[A] (𝑎)) – i.e. P(α[A] (𝑎)) – for all 𝑎 : A such that P(𝑎).
• Hence for any closed type A and 𝑎 : A, we can define P ⊆ JAK by P = {𝑎}.
By construction 𝑏 ∈ P ⇐⇒ 𝑏 ≡A 𝑎, and so by the above it follows that
α[A] (𝑎) ≡A 𝑎.

9/30

Consequences of Parametricity, part 2

Further Example: every closed term α : ∀X.X→ X→ X × X is
extensionally equivalent to one of the following four functions:

ΛX.λ𝑥.λ𝑦.(𝑥, 𝑦) ΛX.λ𝑥.λ𝑦.(𝑦, 𝑥) ΛX.λ𝑥.λ𝑦.(𝑥, 𝑥) ΛX.λ𝑥.λ𝑦.(𝑦, 𝑦)

Proof:

• As before, we can unfold the parametricity theorem for
α : ∀X.X→ X→ X × X to the following:

∀A Type, P ⊆ JAK, 𝑎0, 𝑎1 : A. P(𝑎0) and P(𝑎1)
=⇒ P(π1 (α[A] (𝑎0) (𝑎1))) and P(π2 (α[A] (𝑎0) (𝑎1)))

• Hence for any A Type with 𝑎0, 𝑎1 : A, we can take P = {𝑎0, 𝑎1}, by which
it follows that

π1 (α[A] (𝑎0) (𝑎1)) ∈ {𝑎0, 𝑎1} and π2 (α[A] (𝑎0) (𝑎1)) ∈ {𝑎0, 𝑎1}

9/30

Consequences of Parametricity, part 2

Further Example: every closed term α : ∀X.X→ X→ X × X is
extensionally equivalent to one of the following four functions:

ΛX.λ𝑥.λ𝑦.(𝑥, 𝑦) ΛX.λ𝑥.λ𝑦.(𝑦, 𝑥) ΛX.λ𝑥.λ𝑦.(𝑥, 𝑥) ΛX.λ𝑥.λ𝑦.(𝑦, 𝑦)

Proof:

• As before, we can unfold the parametricity theorem for
α : ∀X.X→ X→ X × X to the following:

∀A Type, P ⊆ JAK, 𝑎0, 𝑎1 : A. P(𝑎0) and P(𝑎1)
=⇒ P(π1 (α[A] (𝑎0) (𝑎1))) and P(π2 (α[A] (𝑎0) (𝑎1)))

• Hence for any A Type with 𝑎0, 𝑎1 : A, we can take P = {𝑎0, 𝑎1}, by which
it follows that

π1 (α[A] (𝑎0) (𝑎1)) ∈ {𝑎0, 𝑎1} and π2 (α[A] (𝑎0) (𝑎1)) ∈ {𝑎0, 𝑎1}

9/30

Consequences of Parametricity, part 2

Further Example: every closed term α : ∀X.X→ X→ X × X is
extensionally equivalent to one of the following four functions:

ΛX.λ𝑥.λ𝑦.(𝑥, 𝑦) ΛX.λ𝑥.λ𝑦.(𝑦, 𝑥) ΛX.λ𝑥.λ𝑦.(𝑥, 𝑥) ΛX.λ𝑥.λ𝑦.(𝑦, 𝑦)

Proof:
• As before, we can unfold the parametricity theorem for
α : ∀X.X→ X→ X × X to the following:

∀A Type, P ⊆ JAK, 𝑎0, 𝑎1 : A. P(𝑎0) and P(𝑎1)
=⇒ P(π1 (α[A] (𝑎0) (𝑎1))) and P(π2 (α[A] (𝑎0) (𝑎1)))

• Hence for any A Type with 𝑎0, 𝑎1 : A, we can take P = {𝑎0, 𝑎1}, by which
it follows that

π1 (α[A] (𝑎0) (𝑎1)) ∈ {𝑎0, 𝑎1} and π2 (α[A] (𝑎0) (𝑎1)) ∈ {𝑎0, 𝑎1}

9/30

Consequences of Parametricity, part 2

Further Example: every closed term α : ∀X.X→ X→ X × X is
extensionally equivalent to one of the following four functions:

ΛX.λ𝑥.λ𝑦.(𝑥, 𝑦) ΛX.λ𝑥.λ𝑦.(𝑦, 𝑥) ΛX.λ𝑥.λ𝑦.(𝑥, 𝑥) ΛX.λ𝑥.λ𝑦.(𝑦, 𝑦)

Proof:
• As before, we can unfold the parametricity theorem for
α : ∀X.X→ X→ X × X to the following:

∀A Type, P ⊆ JAK, 𝑎0, 𝑎1 : A. P(𝑎0) and P(𝑎1)
=⇒ P(π1 (α[A] (𝑎0) (𝑎1))) and P(π2 (α[A] (𝑎0) (𝑎1)))

• Hence for any A Type with 𝑎0, 𝑎1 : A, we can take P = {𝑎0, 𝑎1}, by which
it follows that

π1 (α[A] (𝑎0) (𝑎1)) ∈ {𝑎0, 𝑎1} and π2 (α[A] (𝑎0) (𝑎1)) ∈ {𝑎0, 𝑎1}

10/30

Ordered STLC

To make STLC reflect the rules of ordered logic, we first modify the variable
rule so that a variable must be the only variable in context when it is used:

𝑥 : A ⊢ 𝑥 : A

We then have the following modified types and rules, which now must
preserve the relative order and multiplicities of variables in contexts:

1 Type
A Type B Type

A ⊗ B Type

A Type B Type

A/B Type

A Type B Type

A \ B Type

⊢ ⟨⟩ : 1
Δ ⊢ 𝑢 : 1 Γ,Θ ⊢ 𝑐 : C
Γ,Δ,Θ ⊢ let ⟨⟩ = 𝑢 in 𝑐 : C

Γ ⊢ 𝑎 : A Δ ⊢ 𝑏 : B
Γ,Δ ⊢ ⟨𝑎, 𝑏⟩ : A ⊗ B

Δ ⊢ 𝑝 : A ⊗ B Γ, 𝑥 : A, 𝑦 : B,Θ ⊢ 𝑐 : C
Γ,Δ,Θ ⊢ let ⟨𝑥, 𝑦⟩ = 𝑝 in 𝑐 : C

𝑥 : A,Γ ⊢ 𝑓 : B
Γ ⊢ λ𝑥.𝑓 : A/B

Γ ⊢ 𝑎 : A Δ ⊢ 𝑓 : A/B
Γ,Δ ⊢ 𝑓 (𝑎) : B

Γ, 𝑥 : A ⊢ 𝑓 : B
Γ ⊢ λ𝑥.𝑓 : B \ A

Γ ⊢ 𝑓 : B \ A Δ ⊢ 𝑎 : A
Γ,Δ ⊢ 𝑓 (𝑎) : B

10/30

Ordered STLC

To make STLC reflect the rules of ordered logic, we first modify the variable
rule so that a variable must be the only variable in context when it is used:

𝑥 : A ⊢ 𝑥 : A

We then have the following modified types and rules, which now must
preserve the relative order and multiplicities of variables in contexts:

1 Type
A Type B Type

A ⊗ B Type

A Type B Type

A/B Type

A Type B Type

A \ B Type

⊢ ⟨⟩ : 1
Δ ⊢ 𝑢 : 1 Γ,Θ ⊢ 𝑐 : C
Γ,Δ,Θ ⊢ let ⟨⟩ = 𝑢 in 𝑐 : C

Γ ⊢ 𝑎 : A Δ ⊢ 𝑏 : B
Γ,Δ ⊢ ⟨𝑎, 𝑏⟩ : A ⊗ B

Δ ⊢ 𝑝 : A ⊗ B Γ, 𝑥 : A, 𝑦 : B,Θ ⊢ 𝑐 : C
Γ,Δ,Θ ⊢ let ⟨𝑥, 𝑦⟩ = 𝑝 in 𝑐 : C

𝑥 : A,Γ ⊢ 𝑓 : B
Γ ⊢ λ𝑥.𝑓 : A/B

Γ ⊢ 𝑎 : A Δ ⊢ 𝑓 : A/B
Γ,Δ ⊢ 𝑓 (𝑎) : B

Γ, 𝑥 : A ⊢ 𝑓 : B
Γ ⊢ λ𝑥.𝑓 : B \ A

Γ ⊢ 𝑓 : B \ A Δ ⊢ 𝑎 : A
Γ,Δ ⊢ 𝑓 (𝑎) : B

11/30

Substructural Logic & Resources

A common interpretation of substructural logic & type theory is as a logic of
resources, where the rules of the logic/type theory reflect the ways in which
resources may be created, transformed, and consumed.

We can represent such resources as a monoid, i.e. a setM equipped with an
associative binary operation ⊗ : M ×M→ M and a unit element ϵ ∈ M, i.e.
subject to the following equations

ϵ ⊗ 𝑚 = 𝑚 = 𝑚 ⊗ ϵ (𝑘 ⊗ 𝑚) ⊗ 𝑛 = 𝑘 ⊗ (𝑚 ⊗ 𝑛) ∀𝑘, 𝑚, 𝑛 ∈ M

Intuitively, ⊗ allows us to accumulate resources, and ϵ represents no resource.

11/30

Substructural Logic & Resources

A common interpretation of substructural logic & type theory is as a logic of
resources, where the rules of the logic/type theory reflect the ways in which
resources may be created, transformed, and consumed.

We can represent such resources as a monoid, i.e. a setM equipped with an
associative binary operation ⊗ : M ×M→ M and a unit element ϵ ∈ M, i.e.
subject to the following equations

ϵ ⊗ 𝑚 = 𝑚 = 𝑚 ⊗ ϵ (𝑘 ⊗ 𝑚) ⊗ 𝑛 = 𝑘 ⊗ (𝑚 ⊗ 𝑛) ∀𝑘, 𝑚, 𝑛 ∈ M

Intuitively, ⊗ allows us to accumulate resources, and ϵ represents no resource.

11/30

Substructural Logic & Resources

A common interpretation of substructural logic & type theory is as a logic of
resources, where the rules of the logic/type theory reflect the ways in which
resources may be created, transformed, and consumed.

We can represent such resources as a monoid, i.e. a setM equipped with an
associative binary operation ⊗ : M ×M→ M and a unit element ϵ ∈ M, i.e.
subject to the following equations

ϵ ⊗ 𝑚 = 𝑚 = 𝑚 ⊗ ϵ (𝑘 ⊗ 𝑚) ⊗ 𝑛 = 𝑘 ⊗ (𝑚 ⊗ 𝑛) ∀𝑘, 𝑚, 𝑛 ∈ M

Intuitively, ⊗ allows us to accumulate resources, and ϵ represents no resource.

12/30

Substructural Logical Relations

Fix a monoidM. For each type A Type in substructural STLC, rather than a
mere predicate P ⊆ JAK, we define a relation ⊩A ⊆ M × JAK – where 𝑚 ⊩A 𝑎

roughly means that 𝑎 satisfies the logical predicate in the presence of 𝑚
resources – inductively as follows:

𝑚 ⊩1 𝑢 ⇐⇒ 𝑚 = ϵ and 𝑢 ≡1 ⟨⟩

𝑚 ⊩A⊗B 𝑝 ⇐⇒ ∃𝑛, 𝑘 ∈ M, 𝑎 ∈ JAK, 𝑏 ∈ JBK such that

𝑚 = 𝑛 ⊗ 𝑘, 𝑝 ≡A⊗B ⟨𝑎, 𝑏⟩, 𝑛 ⊩A 𝑎, and 𝑘 ⊩B 𝑏

𝑚 ⊩A/B 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 ∈ JAK, 𝑛 ⊩A 𝑎 =⇒ 𝑛 ⊗ 𝑚 ⊩B 𝑓 (𝑎)

𝑚 ⊩B\A 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 ∈ JAK, 𝑛 ⊩A 𝑎 =⇒ 𝑚 ⊗ 𝑛 ⊩B 𝑓 (𝑎)

12/30

Substructural Logical Relations

Fix a monoidM. For each type A Type in substructural STLC, rather than a
mere predicate P ⊆ JAK, we define a relation ⊩A ⊆ M × JAK – where 𝑚 ⊩A 𝑎

roughly means that 𝑎 satisfies the logical predicate in the presence of 𝑚
resources – inductively as follows:

𝑚 ⊩1 𝑢 ⇐⇒ 𝑚 = ϵ and 𝑢 ≡1 ⟨⟩

𝑚 ⊩A⊗B 𝑝 ⇐⇒ ∃𝑛, 𝑘 ∈ M, 𝑎 ∈ JAK, 𝑏 ∈ JBK such that

𝑚 = 𝑛 ⊗ 𝑘, 𝑝 ≡A⊗B ⟨𝑎, 𝑏⟩, 𝑛 ⊩A 𝑎, and 𝑘 ⊩B 𝑏

𝑚 ⊩A/B 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 ∈ JAK, 𝑛 ⊩A 𝑎 =⇒ 𝑛 ⊗ 𝑚 ⊩B 𝑓 (𝑎)

𝑚 ⊩B\A 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 ∈ JAK, 𝑛 ⊩A 𝑎 =⇒ 𝑚 ⊗ 𝑛 ⊩B 𝑓 (𝑎)

13/30

Substructural Parametricity

Adding parametric polymorphism to substructural STLC works exactly the
same as for System F.

Δ,X,Δ′ | X Type

Δ,X | A Type

Δ | ∀X.A Type

Δ,X | Γ ⊢ 𭟋 : A

Δ | Γ ⊢ ΛX.𭟋 : ∀X.A
Δ | Γ ⊢ 𭟋 : ∀X : A Δ | B Type

Δ | Γ ⊢ 𭟋[B] : A[B/X]

But now we define parametricity for these types with respect to all relations
R ⊆ M × JAK, rather than just predicates on closed terms.

𝑚 ⊩X𝑖 ↦→R𝑖

X𝑗
𝑥 ⇐⇒ 𝑚 R𝑗 𝑥

𝑚 ⊩X𝑖 ↦→R𝑖

∀X.A 𭟋 ⇐⇒ ∀B Type, R ⊆ M × JBK, 𝑚 ⊩X𝑖 ↦→R𝑖 , X ↦→R
A 𭟋[B]

13/30

Substructural Parametricity

Adding parametric polymorphism to substructural STLC works exactly the
same as for System F.

Δ,X,Δ′ | X Type

Δ,X | A Type

Δ | ∀X.A Type

Δ,X | Γ ⊢ 𭟋 : A

Δ | Γ ⊢ ΛX.𭟋 : ∀X.A
Δ | Γ ⊢ 𭟋 : ∀X : A Δ | B Type

Δ | Γ ⊢ 𭟋[B] : A[B/X]

But now we define parametricity for these types with respect to all relations
R ⊆ M × JAK, rather than just predicates on closed terms.

𝑚 ⊩X𝑖 ↦→R𝑖

X𝑗
𝑥 ⇐⇒ 𝑚 R𝑗 𝑥

𝑚 ⊩X𝑖 ↦→R𝑖

∀X.A 𭟋 ⇐⇒ ∀B Type, R ⊆ M × JBK, 𝑚 ⊩X𝑖 ↦→R𝑖 , X ↦→R
A 𭟋[B]

14/30

The Fundamental Theorem

FTLR: if X1, . . . ,X𝑛 | Γ ⊢ 𝑎 : A is derivable in polymorphic ordered STLC, and
M is anymonoid, then:

• For all closed types B1, . . . ,B𝑛 with relations R𝑖 ⊆ M × JB𝑖K along with
𝑚 ∈ M and γ : Γ[B1/X1, . . . ,B𝑛/X𝑛]

if 𝑚 ⊩X𝑖 ↦→R𝑖

Γ γ then 𝑚 ⊩X𝑖 ↦→R𝑖

A 𝑎[γ/Γ]

Proof: Induction on the derivation of X1, . . . ,X𝑛 | Γ ⊢ 𝑎 : A.

14/30

The Fundamental Theorem

FTLR: if X1, . . . ,X𝑛 | Γ ⊢ 𝑎 : A is derivable in polymorphic ordered STLC, and
M is anymonoid, then:
• For all closed types B1, . . . ,B𝑛 with relations R𝑖 ⊆ M × JB𝑖K along with

𝑚 ∈ M and γ : Γ[B1/X1, . . . ,B𝑛/X𝑛]

if 𝑚 ⊩X𝑖 ↦→R𝑖

Γ γ then 𝑚 ⊩X𝑖 ↦→R𝑖

A 𝑎[γ/Γ]

Proof: Induction on the derivation of X1, . . . ,X𝑛 | Γ ⊢ 𝑎 : A.

14/30

The Fundamental Theorem

FTLR: if X1, . . . ,X𝑛 | Γ ⊢ 𝑎 : A is derivable in polymorphic ordered STLC, and
M is anymonoid, then:
• For all closed types B1, . . . ,B𝑛 with relations R𝑖 ⊆ M × JB𝑖K along with

𝑚 ∈ M and γ : Γ[B1/X1, . . . ,B𝑛/X𝑛]

if 𝑚 ⊩X𝑖 ↦→R𝑖

Γ γ then 𝑚 ⊩X𝑖 ↦→R𝑖

A 𝑎[γ/Γ]

Proof: Induction on the derivation of X1, . . . ,X𝑛 | Γ ⊢ 𝑎 : A.

14/30

The Fundamental Theorem

FTLR: if X1, . . . ,X𝑛 | Γ ⊢ 𝑎 : A is derivable in polymorphic ordered STLC, and
M is anymonoid, then:
• For all closed types B1, . . . ,B𝑛 with relations R𝑖 ⊆ M × JB𝑖K along with

𝑚 ∈ M and γ : Γ[B1/X1, . . . ,B𝑛/X𝑛]

if 𝑚 ⊩X𝑖 ↦→R𝑖

Γ γ then 𝑚 ⊩X𝑖 ↦→R𝑖

A 𝑎[γ/Γ]

Proof: Induction on the derivation of X1, . . . ,X𝑛 | Γ ⊢ 𝑎 : A.

15/30

Applications of Substructural Parametricity

Theorem: every closed term 𭟋 : ∀X.X/X/(X ⊗ X) in ordered STLC must be
extensionally equivalent to

ΛX.λ𝑥.λ𝑦.⟨𝑥, 𝑦⟩

Proof: letM be the free monoid on two generators α, β, i.e. the set of strings
𝑥1𝑥2 . . . 𝑥𝑛 with 𝑥𝑖 ∈ {α, β}, with ⊗ given by string concatenation.

Then for any type A Type with 𝑎0, 𝑎1 : A, define R ⊆ M × JAK by
𝑚 R 𝑎 ⇐⇒ either 𝑚 = α and 𝑎 = 𝑎0 or 𝑚 = β and 𝑎 = 𝑎1.

By parametricity for 𭟋, we have the following:

• For all 𝑚, 𝑛 ∈ M, if 𝑚 R 𝑎0 and 𝑛 R 𝑎1, there exist 𝑚′, 𝑛′ ∈ M and
𝑎′, 𝑎′′ : A such that 𝑚 ⊗ 𝑛 = 𝑚′ ⊗ 𝑛′ and 𝑚′ R 𝑎′ and 𝑛′ R 𝑎′′ and
𭟋 A 𝑎0 𝑎1 ≡A ⟨𝑎′, 𝑎′′⟩.
• Substituting α for 𝑚 and β for 𝑛, this implies that we have 𝑚′, 𝑛′ ∈ {α, β}
such that αβ = 𝑚′ ⊗ 𝑛′, which implies that 𝑚′ = α and 𝑛′ = β, and
therefore 𝑎′ = 𝑎0 and 𝑎′′ = 𝑎1, i.e. α A 𝑎0 𝑎1 ≡A ⟨𝑎0, 𝑎1⟩.

15/30

Applications of Substructural Parametricity

Theorem: every closed term 𭟋 : ∀X.X/X/(X ⊗ X) in ordered STLC must be
extensionally equivalent to

ΛX.λ𝑥.λ𝑦.⟨𝑥, 𝑦⟩

Proof: letM be the free monoid on two generators α, β, i.e. the set of strings
𝑥1𝑥2 . . . 𝑥𝑛 with 𝑥𝑖 ∈ {α, β}, with ⊗ given by string concatenation.

Then for any type A Type with 𝑎0, 𝑎1 : A, define R ⊆ M × JAK by
𝑚 R 𝑎 ⇐⇒ either 𝑚 = α and 𝑎 = 𝑎0 or 𝑚 = β and 𝑎 = 𝑎1.

By parametricity for 𭟋, we have the following:

• For all 𝑚, 𝑛 ∈ M, if 𝑚 R 𝑎0 and 𝑛 R 𝑎1, there exist 𝑚′, 𝑛′ ∈ M and
𝑎′, 𝑎′′ : A such that 𝑚 ⊗ 𝑛 = 𝑚′ ⊗ 𝑛′ and 𝑚′ R 𝑎′ and 𝑛′ R 𝑎′′ and
𭟋 A 𝑎0 𝑎1 ≡A ⟨𝑎′, 𝑎′′⟩.
• Substituting α for 𝑚 and β for 𝑛, this implies that we have 𝑚′, 𝑛′ ∈ {α, β}
such that αβ = 𝑚′ ⊗ 𝑛′, which implies that 𝑚′ = α and 𝑛′ = β, and
therefore 𝑎′ = 𝑎0 and 𝑎′′ = 𝑎1, i.e. α A 𝑎0 𝑎1 ≡A ⟨𝑎0, 𝑎1⟩.

15/30

Applications of Substructural Parametricity

Theorem: every closed term 𭟋 : ∀X.X/X/(X ⊗ X) in ordered STLC must be
extensionally equivalent to

ΛX.λ𝑥.λ𝑦.⟨𝑥, 𝑦⟩

Proof: letM be the free monoid on two generators α, β, i.e. the set of strings
𝑥1𝑥2 . . . 𝑥𝑛 with 𝑥𝑖 ∈ {α, β}, with ⊗ given by string concatenation.

Then for any type A Type with 𝑎0, 𝑎1 : A, define R ⊆ M × JAK by
𝑚 R 𝑎 ⇐⇒ either 𝑚 = α and 𝑎 = 𝑎0 or 𝑚 = β and 𝑎 = 𝑎1.

By parametricity for 𭟋, we have the following:

• For all 𝑚, 𝑛 ∈ M, if 𝑚 R 𝑎0 and 𝑛 R 𝑎1, there exist 𝑚′, 𝑛′ ∈ M and
𝑎′, 𝑎′′ : A such that 𝑚 ⊗ 𝑛 = 𝑚′ ⊗ 𝑛′ and 𝑚′ R 𝑎′ and 𝑛′ R 𝑎′′ and
𭟋 A 𝑎0 𝑎1 ≡A ⟨𝑎′, 𝑎′′⟩.
• Substituting α for 𝑚 and β for 𝑛, this implies that we have 𝑚′, 𝑛′ ∈ {α, β}
such that αβ = 𝑚′ ⊗ 𝑛′, which implies that 𝑚′ = α and 𝑛′ = β, and
therefore 𝑎′ = 𝑎0 and 𝑎′′ = 𝑎1, i.e. α A 𝑎0 𝑎1 ≡A ⟨𝑎0, 𝑎1⟩.

15/30

Applications of Substructural Parametricity

Theorem: every closed term 𭟋 : ∀X.X/X/(X ⊗ X) in ordered STLC must be
extensionally equivalent to

ΛX.λ𝑥.λ𝑦.⟨𝑥, 𝑦⟩

Proof: letM be the free monoid on two generators α, β, i.e. the set of strings
𝑥1𝑥2 . . . 𝑥𝑛 with 𝑥𝑖 ∈ {α, β}, with ⊗ given by string concatenation.

Then for any type A Type with 𝑎0, 𝑎1 : A, define R ⊆ M × JAK by
𝑚 R 𝑎 ⇐⇒ either 𝑚 = α and 𝑎 = 𝑎0 or 𝑚 = β and 𝑎 = 𝑎1.

By parametricity for 𭟋, we have the following:

• For all 𝑚, 𝑛 ∈ M, if 𝑚 R 𝑎0 and 𝑛 R 𝑎1, there exist 𝑚′, 𝑛′ ∈ M and
𝑎′, 𝑎′′ : A such that 𝑚 ⊗ 𝑛 = 𝑚′ ⊗ 𝑛′ and 𝑚′ R 𝑎′ and 𝑛′ R 𝑎′′ and
𭟋 A 𝑎0 𝑎1 ≡A ⟨𝑎′, 𝑎′′⟩.
• Substituting α for 𝑚 and β for 𝑛, this implies that we have 𝑚′, 𝑛′ ∈ {α, β}
such that αβ = 𝑚′ ⊗ 𝑛′, which implies that 𝑚′ = α and 𝑛′ = β, and
therefore 𝑎′ = 𝑎0 and 𝑎′′ = 𝑎1, i.e. α A 𝑎0 𝑎1 ≡A ⟨𝑎0, 𝑎1⟩.

15/30

Applications of Substructural Parametricity

Theorem: every closed term 𭟋 : ∀X.X/X/(X ⊗ X) in ordered STLC must be
extensionally equivalent to

ΛX.λ𝑥.λ𝑦.⟨𝑥, 𝑦⟩

Proof: letM be the free monoid on two generators α, β, i.e. the set of strings
𝑥1𝑥2 . . . 𝑥𝑛 with 𝑥𝑖 ∈ {α, β}, with ⊗ given by string concatenation.

Then for any type A Type with 𝑎0, 𝑎1 : A, define R ⊆ M × JAK by
𝑚 R 𝑎 ⇐⇒ either 𝑚 = α and 𝑎 = 𝑎0 or 𝑚 = β and 𝑎 = 𝑎1.

By parametricity for 𭟋, we have the following:
• For all 𝑚, 𝑛 ∈ M, if 𝑚 R 𝑎0 and 𝑛 R 𝑎1, there exist 𝑚′, 𝑛′ ∈ M and

𝑎′, 𝑎′′ : A such that 𝑚 ⊗ 𝑛 = 𝑚′ ⊗ 𝑛′ and 𝑚′ R 𝑎′ and 𝑛′ R 𝑎′′ and
𭟋 A 𝑎0 𝑎1 ≡A ⟨𝑎′, 𝑎′′⟩.

• Substituting α for 𝑚 and β for 𝑛, this implies that we have 𝑚′, 𝑛′ ∈ {α, β}
such that αβ = 𝑚′ ⊗ 𝑛′, which implies that 𝑚′ = α and 𝑛′ = β, and
therefore 𝑎′ = 𝑎0 and 𝑎′′ = 𝑎1, i.e. α A 𝑎0 𝑎1 ≡A ⟨𝑎0, 𝑎1⟩.

15/30

Applications of Substructural Parametricity

Theorem: every closed term 𭟋 : ∀X.X/X/(X ⊗ X) in ordered STLC must be
extensionally equivalent to

ΛX.λ𝑥.λ𝑦.⟨𝑥, 𝑦⟩

Proof: letM be the free monoid on two generators α, β, i.e. the set of strings
𝑥1𝑥2 . . . 𝑥𝑛 with 𝑥𝑖 ∈ {α, β}, with ⊗ given by string concatenation.

Then for any type A Type with 𝑎0, 𝑎1 : A, define R ⊆ M × JAK by
𝑚 R 𝑎 ⇐⇒ either 𝑚 = α and 𝑎 = 𝑎0 or 𝑚 = β and 𝑎 = 𝑎1.

By parametricity for 𭟋, we have the following:
• For all 𝑚, 𝑛 ∈ M, if 𝑚 R 𝑎0 and 𝑛 R 𝑎1, there exist 𝑚′, 𝑛′ ∈ M and

𝑎′, 𝑎′′ : A such that 𝑚 ⊗ 𝑛 = 𝑚′ ⊗ 𝑛′ and 𝑚′ R 𝑎′ and 𝑛′ R 𝑎′′ and
𭟋 A 𝑎0 𝑎1 ≡A ⟨𝑎′, 𝑎′′⟩.
• Substituting α for 𝑚 and β for 𝑛, this implies that we have 𝑚′, 𝑛′ ∈ {α, β}
such that αβ = 𝑚′ ⊗ 𝑛′, which implies that 𝑚′ = α and 𝑛′ = β, and
therefore 𝑎′ = 𝑎0 and 𝑎′′ = 𝑎1, i.e. α A 𝑎0 𝑎1 ≡A ⟨𝑎0, 𝑎1⟩.

16/30

How did I do that?

17/30

Categories & Languages

Definition: a category C consists of a set of objects, and for each pair of objects
a set of arrows or morphisms between them.

A,B ∈ C 𝑓 : A→ B ∈ C

such that arrows are closed under identity and composition

idA : A→ A ∈ C 𝑓 : A→ B ∈ C, 𝑔 : B→ C ∈ C
⊢ 𝑔 ◦ 𝑓 : A→ C ∈ C

𝑓 ◦ idA = 𝑓 = idB ◦ 𝑓 (ℎ ◦ 𝑔) ◦ 𝑓 = ℎ ◦ (𝑔 ◦ 𝑓)

Example: For any type system 𝕋 , there is a category Syn𝕋 – the syntactic
category of 𝕋 – whose objects are types in in 𝕋 and whose morphisms A→ B
are terms 𝑥 : A ⊢ 𝑏 : B in 𝕋 , quotiented up to judgmental equality in 𝕋 .

17/30

Categories & Languages

Definition: a category C consists of a set of objects, and for each pair of objects
a set of arrows or morphisms between them.

A,B ∈ C 𝑓 : A→ B ∈ C

such that arrows are closed under identity and composition

idA : A→ A ∈ C 𝑓 : A→ B ∈ C, 𝑔 : B→ C ∈ C
⊢ 𝑔 ◦ 𝑓 : A→ C ∈ C

𝑓 ◦ idA = 𝑓 = idB ◦ 𝑓 (ℎ ◦ 𝑔) ◦ 𝑓 = ℎ ◦ (𝑔 ◦ 𝑓)

Example: For any type system 𝕋 , there is a category Syn𝕋 – the syntactic
category of 𝕋 – whose objects are types in in 𝕋 and whose morphisms A→ B
are terms 𝑥 : A ⊢ 𝑏 : B in 𝕋 , quotiented up to judgmental equality in 𝕋 .

17/30

Categories & Languages

Definition: a category C consists of a set of objects, and for each pair of objects
a set of arrows or morphisms between them.

A,B ∈ C 𝑓 : A→ B ∈ C

such that arrows are closed under identity and composition

idA : A→ A ∈ C 𝑓 : A→ B ∈ C, 𝑔 : B→ C ∈ C
⊢ 𝑔 ◦ 𝑓 : A→ C ∈ C

𝑓 ◦ idA = 𝑓 = idB ◦ 𝑓 (ℎ ◦ 𝑔) ◦ 𝑓 = ℎ ◦ (𝑔 ◦ 𝑓)

Example: For any type system 𝕋 , there is a category Syn𝕋 – the syntactic
category of 𝕋 – whose objects are types in in 𝕋 and whose morphisms A→ B
are terms 𝑥 : A ⊢ 𝑏 : B in 𝕋 , quotiented up to judgmental equality in 𝕋 .

17/30

Categories & Languages

Definition: a category C consists of a set of objects, and for each pair of objects
a set of arrows or morphisms between them.

A,B ∈ C 𝑓 : A→ B ∈ C

such that arrows are closed under identity and composition

idA : A→ A ∈ C 𝑓 : A→ B ∈ C, 𝑔 : B→ C ∈ C
⊢ 𝑔 ◦ 𝑓 : A→ C ∈ C

𝑓 ◦ idA = 𝑓 = idB ◦ 𝑓 (ℎ ◦ 𝑔) ◦ 𝑓 = ℎ ◦ (𝑔 ◦ 𝑓)

Example: For any type system 𝕋 , there is a category Syn𝕋 – the syntactic
category of 𝕋 – whose objects are types in in 𝕋 and whose morphisms A→ B
are terms 𝑥 : A ⊢ 𝑏 : B in 𝕋 , quotiented up to judgmental equality in 𝕋 .

18/30

Universal Properties

One advantage of the language of category theory is that it lets us
straightforwardly characterize various mathematical constructions by how
they relate to other objects in the same category:

Initial and terminal objects: an object ⊥ in a category C is initial if for
every other object A ∈ C there is a unique morphism ∗A from ⊥ to A. Dually,
an object ⊤ is terminal if for every object A ∈ C, there is a unique morphism !A
from A to ⊤.

∗A : ⊥ → A !A : A→ ⊤

Example: The unit type 1 is the terminal object in SynSTLC.

18/30

Universal Properties

One advantage of the language of category theory is that it lets us
straightforwardly characterize various mathematical constructions by how
they relate to other objects in the same category:

Initial and terminal objects: an object ⊥ in a category C is initial if for
every other object A ∈ C there is a unique morphism ∗A from ⊥ to A. Dually,
an object ⊤ is terminal if for every object A ∈ C, there is a unique morphism !A
from A to ⊤.

∗A : ⊥ → A !A : A→ ⊤

Example: The unit type 1 is the terminal object in SynSTLC.

18/30

Universal Properties

One advantage of the language of category theory is that it lets us
straightforwardly characterize various mathematical constructions by how
they relate to other objects in the same category:

Initial and terminal objects: an object ⊥ in a category C is initial if for
every other object A ∈ C there is a unique morphism ∗A from ⊥ to A. Dually,
an object ⊤ is terminal if for every object A ∈ C, there is a unique morphism !A
from A to ⊤.

∗A : ⊥ → A !A : A→ ⊤

Example: The unit type 1 is the terminal object in SynSTLC.

19/30

Products

Given objects A,B ∈ C, the product of A and B is an object A × B with
projection morphisms A

π1←− A × B π2−→ B such that:

• For any other object Γ with morphisms A
𝑓
←− Γ

𝑔
−→ B, there is a unique

morphism (𝑓 , 𝑔) : Γ→ A × B such that 𝑓 = π1 ◦ (𝑓 , 𝑔) and 𝑔 = π2 ◦ (𝑓 , 𝑔).
This can be visualized as the following commutative diagram.

Γ

A × B

A B

(𝑓 ,𝑔)
𝑓 𝑔

π1 π2

Example: In SynSTLC, the product of two types A,B is given by the product
type A × B.

19/30

Products

Given objects A,B ∈ C, the product of A and B is an object A × B with
projection morphisms A

π1←− A × B π2−→ B such that:

• For any other object Γ with morphisms A
𝑓
←− Γ

𝑔
−→ B, there is a unique

morphism (𝑓 , 𝑔) : Γ→ A × B such that 𝑓 = π1 ◦ (𝑓 , 𝑔) and 𝑔 = π2 ◦ (𝑓 , 𝑔).
This can be visualized as the following commutative diagram.

Γ

A × B

A B

(𝑓 ,𝑔)
𝑓 𝑔

π1 π2

Example: In SynSTLC, the product of two types A,B is given by the product
type A × B.

19/30

Products

Given objects A,B ∈ C, the product of A and B is an object A × B with
projection morphisms A

π1←− A × B π2−→ B such that:

• For any other object Γ with morphisms A
𝑓
←− Γ

𝑔
−→ B, there is a unique

morphism (𝑓 , 𝑔) : Γ→ A × B such that 𝑓 = π1 ◦ (𝑓 , 𝑔) and 𝑔 = π2 ◦ (𝑓 , 𝑔).
This can be visualized as the following commutative diagram.

Γ

A × B

A B

(𝑓 ,𝑔)
𝑓 𝑔

π1 π2

Example: In SynSTLC, the product of two types A,B is given by the product
type A × B.

19/30

Products

Given objects A,B ∈ C, the product of A and B is an object A × B with
projection morphisms A

π1←− A × B π2−→ B such that:

• For any other object Γ with morphisms A
𝑓
←− Γ

𝑔
−→ B, there is a unique

morphism (𝑓 , 𝑔) : Γ→ A × B such that 𝑓 = π1 ◦ (𝑓 , 𝑔) and 𝑔 = π2 ◦ (𝑓 , 𝑔).
This can be visualized as the following commutative diagram.

Γ

A × B

A B

(𝑓 ,𝑔)
𝑓 𝑔

π1 π2

Example: In SynSTLC, the product of two types A,B is given by the product
type A × B.

20/30

Exponentials & Natural Numbers Objects
In a category with products C, given two objects A,B ∈ C, the exponential of A
and B is an object BA with a morphism α : BA × A→ B such that:

• For any other object Γ with 𝑔 : Γ × A→ B, there is a unique morphism
λ(𝑔) : Γ→ BA that makes the following diagram commute:

Γ × A

BA × A B

(λ (𝑔) ,idA)
𝑔

α

Similarly, if C additionally has a terminal object ⊤, then a natural numbers
object (NNO) is an object ℕ ∈ C with 0 : ⊤ → ℕ and s : ℕ→ ℕ such that:
• For any A ∈ C with 𝑎0 : ⊤ → A and 𝑎1 : ℕ × A→ A, there is a unique
morphism rec(𝑎0, 𝑎1) : ℕ→ Amaking the following diagrams commute:

⊤ ℕ

A

0

𝑎0

rec(𝑎0 ,𝑎1)

ℕ ℕ × A

ℕ A

(idℕ ,rec(𝑎0 ,𝑎1))

s 𝑎1

rec(𝑎0 ,𝑎1)

20/30

Exponentials & Natural Numbers Objects
In a category with products C, given two objects A,B ∈ C, the exponential of A
and B is an object BA with a morphism α : BA × A→ B such that:
• For any other object Γ with 𝑔 : Γ × A→ B, there is a unique morphism
λ(𝑔) : Γ→ BA that makes the following diagram commute:

Γ × A

BA × A B

(λ (𝑔) ,idA)
𝑔

α

Similarly, if C additionally has a terminal object ⊤, then a natural numbers
object (NNO) is an object ℕ ∈ C with 0 : ⊤ → ℕ and s : ℕ→ ℕ such that:
• For any A ∈ C with 𝑎0 : ⊤ → A and 𝑎1 : ℕ × A→ A, there is a unique
morphism rec(𝑎0, 𝑎1) : ℕ→ Amaking the following diagrams commute:

⊤ ℕ

A

0

𝑎0

rec(𝑎0 ,𝑎1)

ℕ ℕ × A

ℕ A

(idℕ ,rec(𝑎0 ,𝑎1))

s 𝑎1

rec(𝑎0 ,𝑎1)

20/30

Exponentials & Natural Numbers Objects
In a category with products C, given two objects A,B ∈ C, the exponential of A
and B is an object BA with a morphism α : BA × A→ B such that:
• For any other object Γ with 𝑔 : Γ × A→ B, there is a unique morphism
λ(𝑔) : Γ→ BA that makes the following diagram commute:

Γ × A

BA × A B

(λ (𝑔) ,idA)
𝑔

α

Similarly, if C additionally has a terminal object ⊤, then a natural numbers
object (NNO) is an object ℕ ∈ C with 0 : ⊤ → ℕ and s : ℕ→ ℕ such that:
• For any A ∈ C with 𝑎0 : ⊤ → A and 𝑎1 : ℕ × A→ A, there is a unique
morphism rec(𝑎0, 𝑎1) : ℕ→ Amaking the following diagrams commute:

⊤ ℕ

A

0

𝑎0

rec(𝑎0 ,𝑎1)

ℕ ℕ × A

ℕ A

(idℕ ,rec(𝑎0 ,𝑎1))

s 𝑎1

rec(𝑎0 ,𝑎1)

20/30

Exponentials & Natural Numbers Objects
In a category with products C, given two objects A,B ∈ C, the exponential of A
and B is an object BA with a morphism α : BA × A→ B such that:
• For any other object Γ with 𝑔 : Γ × A→ B, there is a unique morphism
λ(𝑔) : Γ→ BA that makes the following diagram commute:

Γ × A

BA × A B

(λ (𝑔) ,idA)
𝑔

α

Similarly, if C additionally has a terminal object ⊤, then a natural numbers
object (NNO) is an object ℕ ∈ C with 0 : ⊤ → ℕ and s : ℕ→ ℕ such that:

• For any A ∈ C with 𝑎0 : ⊤ → A and 𝑎1 : ℕ × A→ A, there is a unique
morphism rec(𝑎0, 𝑎1) : ℕ→ Amaking the following diagrams commute:

⊤ ℕ

A

0

𝑎0

rec(𝑎0 ,𝑎1)

ℕ ℕ × A

ℕ A

(idℕ ,rec(𝑎0 ,𝑎1))

s 𝑎1

rec(𝑎0 ,𝑎1)

20/30

Exponentials & Natural Numbers Objects
In a category with products C, given two objects A,B ∈ C, the exponential of A
and B is an object BA with a morphism α : BA × A→ B such that:
• For any other object Γ with 𝑔 : Γ × A→ B, there is a unique morphism
λ(𝑔) : Γ→ BA that makes the following diagram commute:

Γ × A

BA × A B

(λ (𝑔) ,idA)
𝑔

α

Similarly, if C additionally has a terminal object ⊤, then a natural numbers
object (NNO) is an object ℕ ∈ C with 0 : ⊤ → ℕ and s : ℕ→ ℕ such that:
• For any A ∈ C with 𝑎0 : ⊤ → A and 𝑎1 : ℕ × A→ A, there is a unique
morphism rec(𝑎0, 𝑎1) : ℕ→ Amaking the following diagrams commute:

⊤ ℕ

A

0

𝑎0

rec(𝑎0 ,𝑎1)

ℕ ℕ × A

ℕ A

(idℕ ,rec(𝑎0 ,𝑎1))

s 𝑎1

rec(𝑎0 ,𝑎1)

20/30

Exponentials & Natural Numbers Objects
In a category with products C, given two objects A,B ∈ C, the exponential of A
and B is an object BA with a morphism α : BA × A→ B such that:
• For any other object Γ with 𝑔 : Γ × A→ B, there is a unique morphism
λ(𝑔) : Γ→ BA that makes the following diagram commute:

Γ × A

BA × A B

(λ (𝑔) ,idA)
𝑔

α

Similarly, if C additionally has a terminal object ⊤, then a natural numbers
object (NNO) is an object ℕ ∈ C with 0 : ⊤ → ℕ and s : ℕ→ ℕ such that:
• For any A ∈ C with 𝑎0 : ⊤ → A and 𝑎1 : ℕ × A→ A, there is a unique
morphism rec(𝑎0, 𝑎1) : ℕ→ Amaking the following diagrams commute:

⊤ ℕ

A

0

𝑎0

rec(𝑎0 ,𝑎1)

ℕ ℕ × A

ℕ A

(idℕ ,rec(𝑎0 ,𝑎1))

s 𝑎1

rec(𝑎0 ,𝑎1)

21/30

Functors
Given categories C,D , a functormaps objects in C to objects inD , and
morphisms in C to morphisms inD , as depicted below:

A F(A)

C D

B F(B)

𝑓 F(𝑓)

in a manner which preserves identities and composition of morphisms, i.e.

F(idA) = idF(A) F(𝑔 ◦ 𝑓) = F(𝑔) ◦ F(𝑓)

Note that functors compose associatively and unitally – hence there is a
category Cat whose objects are categories and whose morphisms are functors.

21/30

Functors
Given categories C,D , a functormaps objects in C to objects inD , and
morphisms in C to morphisms inD , as depicted below:

A F(A)

C D

B F(B)

𝑓 F(𝑓)

in a manner which preserves identities and composition of morphisms, i.e.

F(idA) = idF(A) F(𝑔 ◦ 𝑓) = F(𝑔) ◦ F(𝑓)

Note that functors compose associatively and unitally – hence there is a
category Cat whose objects are categories and whose morphisms are functors.

21/30

Functors
Given categories C,D , a functormaps objects in C to objects inD , and
morphisms in C to morphisms inD , as depicted below:

A F(A)

C D

B F(B)

𝑓 F(𝑓)

in a manner which preserves identities and composition of morphisms, i.e.

F(idA) = idF(A) F(𝑔 ◦ 𝑓) = F(𝑔) ◦ F(𝑓)

Note that functors compose associatively and unitally – hence there is a
category Cat whose objects are categories and whose morphisms are functors.

22/30

Initiality of SynT

A category C with a terminal object, products, and exponentials is called
Cartesian Closed. A functor F : C → D is called (strictly) Cartesian Closed if it
preserves the terminal object, products, and exponentials, i.e.

F(⊤) = ⊤ F(A × B) = F(A) × F(B) F(BA) = F(B)F(A)

Similarly, if C,D have NNOs, then F (strictly) preserves these if F(ℕ) = ℕ.

Let CCCℕ be the category with objects Cartesian Closed Categories with
NNOs, and morphisms Cartesian Closed functors that preserve NNOs.

Theorem: SynT, the syntactic category of System T, is initial in CCCℕ.

Proof: induction on derivations OR sledgehammer with general facts about
GATs, etc.

Idea: reduce FTLR for System T to the existence of a functor
SynT → PredT ∈ CCCℕ, for a suitably constructed category of “logical
predicates” PredT.

22/30

Initiality of SynT

A category C with a terminal object, products, and exponentials is called
Cartesian Closed. A functor F : C → D is called (strictly) Cartesian Closed if it
preserves the terminal object, products, and exponentials, i.e.

F(⊤) = ⊤ F(A × B) = F(A) × F(B) F(BA) = F(B)F(A)

Similarly, if C,D have NNOs, then F (strictly) preserves these if F(ℕ) = ℕ.

Let CCCℕ be the category with objects Cartesian Closed Categories with
NNOs, and morphisms Cartesian Closed functors that preserve NNOs.

Theorem: SynT, the syntactic category of System T, is initial in CCCℕ.

Proof: induction on derivations OR sledgehammer with general facts about
GATs, etc.

Idea: reduce FTLR for System T to the existence of a functor
SynT → PredT ∈ CCCℕ, for a suitably constructed category of “logical
predicates” PredT.

22/30

Initiality of SynT

A category C with a terminal object, products, and exponentials is called
Cartesian Closed. A functor F : C → D is called (strictly) Cartesian Closed if it
preserves the terminal object, products, and exponentials, i.e.

F(⊤) = ⊤ F(A × B) = F(A) × F(B) F(BA) = F(B)F(A)

Similarly, if C,D have NNOs, then F (strictly) preserves these if F(ℕ) = ℕ.

Let CCCℕ be the category with objects Cartesian Closed Categories with
NNOs, and morphisms Cartesian Closed functors that preserve NNOs.

Theorem: SynT, the syntactic category of System T, is initial in CCCℕ.

Proof: induction on derivations OR sledgehammer with general facts about
GATs, etc.

Idea: reduce FTLR for System T to the existence of a functor
SynT → PredT ∈ CCCℕ, for a suitably constructed category of “logical
predicates” PredT.

22/30

Initiality of SynT

A category C with a terminal object, products, and exponentials is called
Cartesian Closed. A functor F : C → D is called (strictly) Cartesian Closed if it
preserves the terminal object, products, and exponentials, i.e.

F(⊤) = ⊤ F(A × B) = F(A) × F(B) F(BA) = F(B)F(A)

Similarly, if C,D have NNOs, then F (strictly) preserves these if F(ℕ) = ℕ.

Let CCCℕ be the category with objects Cartesian Closed Categories with
NNOs, and morphisms Cartesian Closed functors that preserve NNOs.

Theorem: SynT, the syntactic category of System T, is initial in CCCℕ.

Proof: induction on derivations OR sledgehammer with general facts about
GATs, etc.

Idea: reduce FTLR for System T to the existence of a functor
SynT → PredT ∈ CCCℕ, for a suitably constructed category of “logical
predicates” PredT.

22/30

Initiality of SynT

A category C with a terminal object, products, and exponentials is called
Cartesian Closed. A functor F : C → D is called (strictly) Cartesian Closed if it
preserves the terminal object, products, and exponentials, i.e.

F(⊤) = ⊤ F(A × B) = F(A) × F(B) F(BA) = F(B)F(A)

Similarly, if C,D have NNOs, then F (strictly) preserves these if F(ℕ) = ℕ.

Let CCCℕ be the category with objects Cartesian Closed Categories with
NNOs, and morphisms Cartesian Closed functors that preserve NNOs.

Theorem: SynT, the syntactic category of System T, is initial in CCCℕ.

Proof: induction on derivations OR sledgehammer with general facts about
GATs, etc.

Idea: reduce FTLR for System T to the existence of a functor
SynT → PredT ∈ CCCℕ, for a suitably constructed category of “logical
predicates” PredT.

22/30

Initiality of SynT

A category C with a terminal object, products, and exponentials is called
Cartesian Closed. A functor F : C → D is called (strictly) Cartesian Closed if it
preserves the terminal object, products, and exponentials, i.e.

F(⊤) = ⊤ F(A × B) = F(A) × F(B) F(BA) = F(B)F(A)

Similarly, if C,D have NNOs, then F (strictly) preserves these if F(ℕ) = ℕ.

Let CCCℕ be the category with objects Cartesian Closed Categories with
NNOs, and morphisms Cartesian Closed functors that preserve NNOs.

Theorem: SynT, the syntactic category of System T, is initial in CCCℕ.

Proof: induction on derivations OR sledgehammer with general facts about
GATs, etc.

Idea: reduce FTLR for System T to the existence of a functor
SynT → PredT ∈ CCCℕ, for a suitably constructed category of “logical
predicates” PredT.

23/30

From Logical to Categorical Predicates
Define the category PredT as follows:

• Objects are pairs (A, PA) where A is a type in System T and P ⊆ JAK.
• A morphism (A, PA) → (B, PB) is a term 𝑥 : A ⊢ 𝑓 : B in System T such
that for all 𝑎 : A, if PA (𝑎) then PB (𝑓 [𝑎/𝑥]).

PredT is Cartesian Closed and has a natural numbers object as follows:
• The terminal object of PredT is the pair (1, {()})
• The product of (A, PA) and (B, PB) is given by (A × B, PA×B), where

PA×B (𝑝) ⇐⇒ PA (π1 (𝑝)) and PB (π2 (𝑝))

• The exponential of (A, PA) and (B, PB) is given by (A→ B, PA→B), where

PA→B (𝑓) ⇐⇒ ∀𝑎 : A.PA (𝑎) =⇒ PB (𝑓 (𝑎))

• The natural numbers object of PredT is given by (ℕ, Pℕ) where

Pℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ℕ 𝑚

23/30

From Logical to Categorical Predicates
Define the category PredT as follows:
• Objects are pairs (A, PA) where A is a type in System T and P ⊆ JAK.

• A morphism (A, PA) → (B, PB) is a term 𝑥 : A ⊢ 𝑓 : B in System T such
that for all 𝑎 : A, if PA (𝑎) then PB (𝑓 [𝑎/𝑥]).

PredT is Cartesian Closed and has a natural numbers object as follows:
• The terminal object of PredT is the pair (1, {()})
• The product of (A, PA) and (B, PB) is given by (A × B, PA×B), where

PA×B (𝑝) ⇐⇒ PA (π1 (𝑝)) and PB (π2 (𝑝))

• The exponential of (A, PA) and (B, PB) is given by (A→ B, PA→B), where

PA→B (𝑓) ⇐⇒ ∀𝑎 : A.PA (𝑎) =⇒ PB (𝑓 (𝑎))

• The natural numbers object of PredT is given by (ℕ, Pℕ) where

Pℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ℕ 𝑚

23/30

From Logical to Categorical Predicates
Define the category PredT as follows:
• Objects are pairs (A, PA) where A is a type in System T and P ⊆ JAK.
• A morphism (A, PA) → (B, PB) is a term 𝑥 : A ⊢ 𝑓 : B in System T such
that for all 𝑎 : A, if PA (𝑎) then PB (𝑓 [𝑎/𝑥]).

PredT is Cartesian Closed and has a natural numbers object as follows:
• The terminal object of PredT is the pair (1, {()})
• The product of (A, PA) and (B, PB) is given by (A × B, PA×B), where

PA×B (𝑝) ⇐⇒ PA (π1 (𝑝)) and PB (π2 (𝑝))

• The exponential of (A, PA) and (B, PB) is given by (A→ B, PA→B), where

PA→B (𝑓) ⇐⇒ ∀𝑎 : A.PA (𝑎) =⇒ PB (𝑓 (𝑎))

• The natural numbers object of PredT is given by (ℕ, Pℕ) where

Pℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ℕ 𝑚

23/30

From Logical to Categorical Predicates
Define the category PredT as follows:
• Objects are pairs (A, PA) where A is a type in System T and P ⊆ JAK.
• A morphism (A, PA) → (B, PB) is a term 𝑥 : A ⊢ 𝑓 : B in System T such
that for all 𝑎 : A, if PA (𝑎) then PB (𝑓 [𝑎/𝑥]).

PredT is Cartesian Closed and has a natural numbers object as follows:

• The terminal object of PredT is the pair (1, {()})
• The product of (A, PA) and (B, PB) is given by (A × B, PA×B), where

PA×B (𝑝) ⇐⇒ PA (π1 (𝑝)) and PB (π2 (𝑝))

• The exponential of (A, PA) and (B, PB) is given by (A→ B, PA→B), where

PA→B (𝑓) ⇐⇒ ∀𝑎 : A.PA (𝑎) =⇒ PB (𝑓 (𝑎))

• The natural numbers object of PredT is given by (ℕ, Pℕ) where

Pℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ℕ 𝑚

23/30

From Logical to Categorical Predicates
Define the category PredT as follows:
• Objects are pairs (A, PA) where A is a type in System T and P ⊆ JAK.
• A morphism (A, PA) → (B, PB) is a term 𝑥 : A ⊢ 𝑓 : B in System T such
that for all 𝑎 : A, if PA (𝑎) then PB (𝑓 [𝑎/𝑥]).

PredT is Cartesian Closed and has a natural numbers object as follows:
• The terminal object of PredT is the pair (1, {()})

• The product of (A, PA) and (B, PB) is given by (A × B, PA×B), where

PA×B (𝑝) ⇐⇒ PA (π1 (𝑝)) and PB (π2 (𝑝))

• The exponential of (A, PA) and (B, PB) is given by (A→ B, PA→B), where

PA→B (𝑓) ⇐⇒ ∀𝑎 : A.PA (𝑎) =⇒ PB (𝑓 (𝑎))

• The natural numbers object of PredT is given by (ℕ, Pℕ) where

Pℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ℕ 𝑚

23/30

From Logical to Categorical Predicates
Define the category PredT as follows:
• Objects are pairs (A, PA) where A is a type in System T and P ⊆ JAK.
• A morphism (A, PA) → (B, PB) is a term 𝑥 : A ⊢ 𝑓 : B in System T such
that for all 𝑎 : A, if PA (𝑎) then PB (𝑓 [𝑎/𝑥]).

PredT is Cartesian Closed and has a natural numbers object as follows:
• The terminal object of PredT is the pair (1, {()})
• The product of (A, PA) and (B, PB) is given by (A × B, PA×B), where

PA×B (𝑝) ⇐⇒ PA (π1 (𝑝)) and PB (π2 (𝑝))

• The exponential of (A, PA) and (B, PB) is given by (A→ B, PA→B), where

PA→B (𝑓) ⇐⇒ ∀𝑎 : A.PA (𝑎) =⇒ PB (𝑓 (𝑎))

• The natural numbers object of PredT is given by (ℕ, Pℕ) where

Pℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ℕ 𝑚

23/30

From Logical to Categorical Predicates
Define the category PredT as follows:
• Objects are pairs (A, PA) where A is a type in System T and P ⊆ JAK.
• A morphism (A, PA) → (B, PB) is a term 𝑥 : A ⊢ 𝑓 : B in System T such
that for all 𝑎 : A, if PA (𝑎) then PB (𝑓 [𝑎/𝑥]).

PredT is Cartesian Closed and has a natural numbers object as follows:
• The terminal object of PredT is the pair (1, {()})
• The product of (A, PA) and (B, PB) is given by (A × B, PA×B), where

PA×B (𝑝) ⇐⇒ PA (π1 (𝑝)) and PB (π2 (𝑝))

• The exponential of (A, PA) and (B, PB) is given by (A→ B, PA→B), where

PA→B (𝑓) ⇐⇒ ∀𝑎 : A.PA (𝑎) =⇒ PB (𝑓 (𝑎))

• The natural numbers object of PredT is given by (ℕ, Pℕ) where

Pℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ℕ 𝑚

23/30

From Logical to Categorical Predicates
Define the category PredT as follows:
• Objects are pairs (A, PA) where A is a type in System T and P ⊆ JAK.
• A morphism (A, PA) → (B, PB) is a term 𝑥 : A ⊢ 𝑓 : B in System T such
that for all 𝑎 : A, if PA (𝑎) then PB (𝑓 [𝑎/𝑥]).

PredT is Cartesian Closed and has a natural numbers object as follows:
• The terminal object of PredT is the pair (1, {()})
• The product of (A, PA) and (B, PB) is given by (A × B, PA×B), where

PA×B (𝑝) ⇐⇒ PA (π1 (𝑝)) and PB (π2 (𝑝))

• The exponential of (A, PA) and (B, PB) is given by (A→ B, PA→B), where

PA→B (𝑓) ⇐⇒ ∀𝑎 : A.PA (𝑎) =⇒ PB (𝑓 (𝑎))

• The natural numbers object of PredT is given by (ℕ, Pℕ) where

Pℕ (𝑛) ⇐⇒ ∃𝑚 s.t. 𝑛 ≡ℕ 𝑚

24/30

FLTR, Categorically
By construction, there is a functor π : PredT → SynT ∈ CCCℕ such that

π(A, PA) = A

Then since PredT ∈ ℂℂℂℕ, it follows that there is also a functor
ℙ : SynT → PredT ∈ CCCℕ.

Hence we have π ◦ ℙ : SynT → SynT ∈ CCCℕ.

But since SynT is initial in CCCℕ, there can only be one such functor
SynT → SynT, so we must have π ◦ ℙ = IdSynT , i.e.

SynT PredT

SynT

ℙ

π

Claim: the fact that the above diagram commutes is equivalent to FTLR.
• By the above, ℙmaps each term 𝑥 : A ⊢ 𝑓 : B in System T to a morphism
𝑓 ′ : (A,ℙA) → (B,ℙB) ∈ PredT such that π(𝑓 ′) = 𝑓 .

• i.e. for all 𝑎 : A, if ℙA (𝑎) then ℙB (𝑓 [𝑎/𝑥]).

24/30

FLTR, Categorically
By construction, there is a functor π : PredT → SynT ∈ CCCℕ such that

π(A, PA) = A

Then since PredT ∈ ℂℂℂℕ, it follows that there is also a functor
ℙ : SynT → PredT ∈ CCCℕ.

Hence we have π ◦ ℙ : SynT → SynT ∈ CCCℕ.

But since SynT is initial in CCCℕ, there can only be one such functor
SynT → SynT, so we must have π ◦ ℙ = IdSynT , i.e.

SynT PredT

SynT

ℙ

π

Claim: the fact that the above diagram commutes is equivalent to FTLR.
• By the above, ℙmaps each term 𝑥 : A ⊢ 𝑓 : B in System T to a morphism
𝑓 ′ : (A,ℙA) → (B,ℙB) ∈ PredT such that π(𝑓 ′) = 𝑓 .

• i.e. for all 𝑎 : A, if ℙA (𝑎) then ℙB (𝑓 [𝑎/𝑥]).

24/30

FLTR, Categorically
By construction, there is a functor π : PredT → SynT ∈ CCCℕ such that

π(A, PA) = A

Then since PredT ∈ ℂℂℂℕ, it follows that there is also a functor
ℙ : SynT → PredT ∈ CCCℕ.

Hence we have π ◦ ℙ : SynT → SynT ∈ CCCℕ.

But since SynT is initial in CCCℕ, there can only be one such functor
SynT → SynT, so we must have π ◦ ℙ = IdSynT , i.e.

SynT PredT

SynT

ℙ

π

Claim: the fact that the above diagram commutes is equivalent to FTLR.
• By the above, ℙmaps each term 𝑥 : A ⊢ 𝑓 : B in System T to a morphism
𝑓 ′ : (A,ℙA) → (B,ℙB) ∈ PredT such that π(𝑓 ′) = 𝑓 .

• i.e. for all 𝑎 : A, if ℙA (𝑎) then ℙB (𝑓 [𝑎/𝑥]).

24/30

FLTR, Categorically
By construction, there is a functor π : PredT → SynT ∈ CCCℕ such that

π(A, PA) = A

Then since PredT ∈ ℂℂℂℕ, it follows that there is also a functor
ℙ : SynT → PredT ∈ CCCℕ.

Hence we have π ◦ ℙ : SynT → SynT ∈ CCCℕ.

But since SynT is initial in CCCℕ, there can only be one such functor
SynT → SynT, so we must have π ◦ ℙ = IdSynT , i.e.

SynT PredT

SynT

ℙ

π

Claim: the fact that the above diagram commutes is equivalent to FTLR.
• By the above, ℙmaps each term 𝑥 : A ⊢ 𝑓 : B in System T to a morphism
𝑓 ′ : (A,ℙA) → (B,ℙB) ∈ PredT such that π(𝑓 ′) = 𝑓 .

• i.e. for all 𝑎 : A, if ℙA (𝑎) then ℙB (𝑓 [𝑎/𝑥]).

24/30

FLTR, Categorically
By construction, there is a functor π : PredT → SynT ∈ CCCℕ such that

π(A, PA) = A

Then since PredT ∈ ℂℂℂℕ, it follows that there is also a functor
ℙ : SynT → PredT ∈ CCCℕ.

Hence we have π ◦ ℙ : SynT → SynT ∈ CCCℕ.

But since SynT is initial in CCCℕ, there can only be one such functor
SynT → SynT, so we must have π ◦ ℙ = IdSynT , i.e.

SynT PredT

SynT

ℙ

π

Claim: the fact that the above diagram commutes is equivalent to FTLR.

• By the above, ℙmaps each term 𝑥 : A ⊢ 𝑓 : B in System T to a morphism
𝑓 ′ : (A,ℙA) → (B,ℙB) ∈ PredT such that π(𝑓 ′) = 𝑓 .

• i.e. for all 𝑎 : A, if ℙA (𝑎) then ℙB (𝑓 [𝑎/𝑥]).

24/30

FLTR, Categorically
By construction, there is a functor π : PredT → SynT ∈ CCCℕ such that

π(A, PA) = A

Then since PredT ∈ ℂℂℂℕ, it follows that there is also a functor
ℙ : SynT → PredT ∈ CCCℕ.

Hence we have π ◦ ℙ : SynT → SynT ∈ CCCℕ.

But since SynT is initial in CCCℕ, there can only be one such functor
SynT → SynT, so we must have π ◦ ℙ = IdSynT , i.e.

SynT PredT

SynT

ℙ

π

Claim: the fact that the above diagram commutes is equivalent to FTLR.
• By the above, ℙmaps each term 𝑥 : A ⊢ 𝑓 : B in System T to a morphism
𝑓 ′ : (A,ℙA) → (B,ℙB) ∈ PredT such that π(𝑓 ′) = 𝑓 .

• i.e. for all 𝑎 : A, if ℙA (𝑎) then ℙB (𝑓 [𝑎/𝑥]).

24/30

FLTR, Categorically
By construction, there is a functor π : PredT → SynT ∈ CCCℕ such that

π(A, PA) = A

Then since PredT ∈ ℂℂℂℕ, it follows that there is also a functor
ℙ : SynT → PredT ∈ CCCℕ.

Hence we have π ◦ ℙ : SynT → SynT ∈ CCCℕ.

But since SynT is initial in CCCℕ, there can only be one such functor
SynT → SynT, so we must have π ◦ ℙ = IdSynT , i.e.

SynT PredT

SynT

ℙ

π

Claim: the fact that the above diagram commutes is equivalent to FTLR.
• By the above, ℙmaps each term 𝑥 : A ⊢ 𝑓 : B in System T to a morphism
𝑓 ′ : (A,ℙA) → (B,ℙB) ∈ PredT such that π(𝑓 ′) = 𝑓 .
• i.e. for all 𝑎 : A, if ℙA (𝑎) then ℙB (𝑓 [𝑎/𝑥]).

25/30

A Recipe for Logical Relations

To define logical relations and prove FTLR for a given type system 𝕋

1 Show that Syn𝕋 is the initial object in some category of structured
categories C.

• If you play your cards right, this is the easy part.

2 Build a category of relations Rel𝕋 and show that it is also an object of C
with a morphism π : Rel𝕋 → Syn𝕋 .

3 Derive FTLR from the existence of a commuting triangle of functors as
below:

Syn𝕋 Rel𝕋

Syn𝕋

π

25/30

A Recipe for Logical Relations

To define logical relations and prove FTLR for a given type system 𝕋

1 Show that Syn𝕋 is the initial object in some category of structured
categories C.

• If you play your cards right, this is the easy part.

2 Build a category of relations Rel𝕋 and show that it is also an object of C
with a morphism π : Rel𝕋 → Syn𝕋 .

3 Derive FTLR from the existence of a commuting triangle of functors as
below:

Syn𝕋 Rel𝕋

Syn𝕋

π

25/30

A Recipe for Logical Relations

To define logical relations and prove FTLR for a given type system 𝕋

1 Show that Syn𝕋 is the initial object in some category of structured
categories C.
• If you play your cards right, this is the easy part.

2 Build a category of relations Rel𝕋 and show that it is also an object of C
with a morphism π : Rel𝕋 → Syn𝕋 .

3 Derive FTLR from the existence of a commuting triangle of functors as
below:

Syn𝕋 Rel𝕋

Syn𝕋

π

25/30

A Recipe for Logical Relations

To define logical relations and prove FTLR for a given type system 𝕋

1 Show that Syn𝕋 is the initial object in some category of structured
categories C.
• If you play your cards right, this is the easy part.

2 Build a category of relations Rel𝕋 and show that it is also an object of C
with a morphism π : Rel𝕋 → Syn𝕋 .

3 Derive FTLR from the existence of a commuting triangle of functors as
below:

Syn𝕋 Rel𝕋

Syn𝕋

π

25/30

A Recipe for Logical Relations

To define logical relations and prove FTLR for a given type system 𝕋

1 Show that Syn𝕋 is the initial object in some category of structured
categories C.
• If you play your cards right, this is the easy part.

2 Build a category of relations Rel𝕋 and show that it is also an object of C
with a morphism π : Rel𝕋 → Syn𝕋 .

3 Derive FTLR from the existence of a commuting triangle of functors as
below:

Syn𝕋 Rel𝕋

Syn𝕋

π

26/30

Monoidal Categories & Ordered STLC
A monoidal category is a categoryM equipped with an object ϵ ∈ M and a
functor ⊗ :M ×M →M with natural isomorphisms

ϵ ⊗ A � A � A ⊗ ϵ (A ⊗ B) ⊗ C � A ⊗ (B ⊗ C)

subject to certain coherence conditions.

We say thatM is biclosed if for all A,B ∈ M there are objects A/B and B \ A
with morphisms αL : A ⊗ A/B→ B and αR : B \ A ⊗ A→ B such that:
• For all Γ,Δ ∈ M with 𝑔 : A ⊗ Γ→ B and ℎ : Δ ⊗ A→ B, there are
morphisms λL (𝑔) : Γ→ A/B and λR (ℎ) : Δ→ B \ Amaking the
following commute:

A ⊗ Γ Δ ⊗ A

A ⊗ A/B B B \ A ⊗ A

idA⊗λL (𝑔)
𝑔 ℎ

λR (ℎ)⊗idA

αL αR

Theorem: The syntactic category of ordered STLC is initial in the category of
biclosed monoidal categories and functors that preserve ϵ , ⊗, /, and \.

26/30

Monoidal Categories & Ordered STLC
A monoidal category is a categoryM equipped with an object ϵ ∈ M and a
functor ⊗ :M ×M →M with natural isomorphisms

ϵ ⊗ A � A � A ⊗ ϵ (A ⊗ B) ⊗ C � A ⊗ (B ⊗ C)

subject to certain coherence conditions.

We say thatM is biclosed if for all A,B ∈ M there are objects A/B and B \ A
with morphisms αL : A ⊗ A/B→ B and αR : B \ A ⊗ A→ B such that:

• For all Γ,Δ ∈ M with 𝑔 : A ⊗ Γ→ B and ℎ : Δ ⊗ A→ B, there are
morphisms λL (𝑔) : Γ→ A/B and λR (ℎ) : Δ→ B \ Amaking the
following commute:

A ⊗ Γ Δ ⊗ A

A ⊗ A/B B B \ A ⊗ A

idA⊗λL (𝑔)
𝑔 ℎ

λR (ℎ)⊗idA

αL αR

Theorem: The syntactic category of ordered STLC is initial in the category of
biclosed monoidal categories and functors that preserve ϵ , ⊗, /, and \.

26/30

Monoidal Categories & Ordered STLC
A monoidal category is a categoryM equipped with an object ϵ ∈ M and a
functor ⊗ :M ×M →M with natural isomorphisms

ϵ ⊗ A � A � A ⊗ ϵ (A ⊗ B) ⊗ C � A ⊗ (B ⊗ C)

subject to certain coherence conditions.

We say thatM is biclosed if for all A,B ∈ M there are objects A/B and B \ A
with morphisms αL : A ⊗ A/B→ B and αR : B \ A ⊗ A→ B such that:
• For all Γ,Δ ∈ M with 𝑔 : A ⊗ Γ→ B and ℎ : Δ ⊗ A→ B, there are
morphisms λL (𝑔) : Γ→ A/B and λR (ℎ) : Δ→ B \ Amaking the
following commute:

A ⊗ Γ Δ ⊗ A

A ⊗ A/B B B \ A ⊗ A

idA⊗λL (𝑔)
𝑔 ℎ

λR (ℎ)⊗idA

αL αR

Theorem: The syntactic category of ordered STLC is initial in the category of
biclosed monoidal categories and functors that preserve ϵ , ⊗, /, and \.

26/30

Monoidal Categories & Ordered STLC
A monoidal category is a categoryM equipped with an object ϵ ∈ M and a
functor ⊗ :M ×M →M with natural isomorphisms

ϵ ⊗ A � A � A ⊗ ϵ (A ⊗ B) ⊗ C � A ⊗ (B ⊗ C)

subject to certain coherence conditions.

We say thatM is biclosed if for all A,B ∈ M there are objects A/B and B \ A
with morphisms αL : A ⊗ A/B→ B and αR : B \ A ⊗ A→ B such that:
• For all Γ,Δ ∈ M with 𝑔 : A ⊗ Γ→ B and ℎ : Δ ⊗ A→ B, there are
morphisms λL (𝑔) : Γ→ A/B and λR (ℎ) : Δ→ B \ Amaking the
following commute:

A ⊗ Γ Δ ⊗ A

A ⊗ A/B B B \ A ⊗ A

idA⊗λL (𝑔)
𝑔 ℎ

λR (ℎ)⊗idA

αL αR

Theorem: The syntactic category of ordered STLC is initial in the category of
biclosed monoidal categories and functors that preserve ϵ , ⊗, /, and \.

27/30

Substructural Categorical Relations
Fix a monoidM. Define a category RelM⊗ as follows:

• Objects are pairs (A,⊩A) where A is a type in ordered STLC and
⊩A ⊆ M × JAK
• A morphism (A,⊩A) → (B,⊩B) is a term 𝑥 : A ⊢ 𝑓 : B in ordered STLC
such that for all 𝑚 ∈ M and 𝑎 : A, if 𝑚 ⊩A 𝑎 then 𝑚 ⊩B 𝑓 [𝑎/𝑥]

RelM⊗ can be given the structure of a biclosed monoidal category as follows:
• The monoidal unit is (1, {(ϵ , ⟨⟩)})
• Given (A,⊩A) and (B,⊩B), define their monoidal product as
(A ⊗ B,⊩A⊗B) where

𝑚 ⊩A⊗B 𝑝 ⇐⇒ ∃𝑛, 𝑘 ∈ M, 𝑎 : A, 𝑏 : B s.t.
𝑚 = 𝑛 ⊗ 𝑘, 𝑝 ≡A⊗B ⟨𝑎, 𝑏⟩, 𝑛 ⊩A 𝑎 and 𝑘 ⊩B 𝑏

• Given (A,⊩A) and (B,⊩B), define their left closure as (A/B,⊩A/B) where

𝑚 ⊩A/B 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A, 𝑛 ⊩A 𝑎 =⇒ 𝑛 ⊗ 𝑚 ⊩B 𝑓 (𝑎)

• And similarly for the right closure.

27/30

Substructural Categorical Relations
Fix a monoidM. Define a category RelM⊗ as follows:
• Objects are pairs (A,⊩A) where A is a type in ordered STLC and
⊩A ⊆ M × JAK

• A morphism (A,⊩A) → (B,⊩B) is a term 𝑥 : A ⊢ 𝑓 : B in ordered STLC
such that for all 𝑚 ∈ M and 𝑎 : A, if 𝑚 ⊩A 𝑎 then 𝑚 ⊩B 𝑓 [𝑎/𝑥]

RelM⊗ can be given the structure of a biclosed monoidal category as follows:
• The monoidal unit is (1, {(ϵ , ⟨⟩)})
• Given (A,⊩A) and (B,⊩B), define their monoidal product as
(A ⊗ B,⊩A⊗B) where

𝑚 ⊩A⊗B 𝑝 ⇐⇒ ∃𝑛, 𝑘 ∈ M, 𝑎 : A, 𝑏 : B s.t.
𝑚 = 𝑛 ⊗ 𝑘, 𝑝 ≡A⊗B ⟨𝑎, 𝑏⟩, 𝑛 ⊩A 𝑎 and 𝑘 ⊩B 𝑏

• Given (A,⊩A) and (B,⊩B), define their left closure as (A/B,⊩A/B) where

𝑚 ⊩A/B 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A, 𝑛 ⊩A 𝑎 =⇒ 𝑛 ⊗ 𝑚 ⊩B 𝑓 (𝑎)

• And similarly for the right closure.

27/30

Substructural Categorical Relations
Fix a monoidM. Define a category RelM⊗ as follows:
• Objects are pairs (A,⊩A) where A is a type in ordered STLC and
⊩A ⊆ M × JAK
• A morphism (A,⊩A) → (B,⊩B) is a term 𝑥 : A ⊢ 𝑓 : B in ordered STLC
such that for all 𝑚 ∈ M and 𝑎 : A, if 𝑚 ⊩A 𝑎 then 𝑚 ⊩B 𝑓 [𝑎/𝑥]

RelM⊗ can be given the structure of a biclosed monoidal category as follows:
• The monoidal unit is (1, {(ϵ , ⟨⟩)})
• Given (A,⊩A) and (B,⊩B), define their monoidal product as
(A ⊗ B,⊩A⊗B) where

𝑚 ⊩A⊗B 𝑝 ⇐⇒ ∃𝑛, 𝑘 ∈ M, 𝑎 : A, 𝑏 : B s.t.
𝑚 = 𝑛 ⊗ 𝑘, 𝑝 ≡A⊗B ⟨𝑎, 𝑏⟩, 𝑛 ⊩A 𝑎 and 𝑘 ⊩B 𝑏

• Given (A,⊩A) and (B,⊩B), define their left closure as (A/B,⊩A/B) where

𝑚 ⊩A/B 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A, 𝑛 ⊩A 𝑎 =⇒ 𝑛 ⊗ 𝑚 ⊩B 𝑓 (𝑎)

• And similarly for the right closure.

27/30

Substructural Categorical Relations
Fix a monoidM. Define a category RelM⊗ as follows:
• Objects are pairs (A,⊩A) where A is a type in ordered STLC and
⊩A ⊆ M × JAK
• A morphism (A,⊩A) → (B,⊩B) is a term 𝑥 : A ⊢ 𝑓 : B in ordered STLC
such that for all 𝑚 ∈ M and 𝑎 : A, if 𝑚 ⊩A 𝑎 then 𝑚 ⊩B 𝑓 [𝑎/𝑥]

RelM⊗ can be given the structure of a biclosed monoidal category as follows:

• The monoidal unit is (1, {(ϵ , ⟨⟩)})
• Given (A,⊩A) and (B,⊩B), define their monoidal product as
(A ⊗ B,⊩A⊗B) where

𝑚 ⊩A⊗B 𝑝 ⇐⇒ ∃𝑛, 𝑘 ∈ M, 𝑎 : A, 𝑏 : B s.t.
𝑚 = 𝑛 ⊗ 𝑘, 𝑝 ≡A⊗B ⟨𝑎, 𝑏⟩, 𝑛 ⊩A 𝑎 and 𝑘 ⊩B 𝑏

• Given (A,⊩A) and (B,⊩B), define their left closure as (A/B,⊩A/B) where

𝑚 ⊩A/B 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A, 𝑛 ⊩A 𝑎 =⇒ 𝑛 ⊗ 𝑚 ⊩B 𝑓 (𝑎)

• And similarly for the right closure.

27/30

Substructural Categorical Relations
Fix a monoidM. Define a category RelM⊗ as follows:
• Objects are pairs (A,⊩A) where A is a type in ordered STLC and
⊩A ⊆ M × JAK
• A morphism (A,⊩A) → (B,⊩B) is a term 𝑥 : A ⊢ 𝑓 : B in ordered STLC
such that for all 𝑚 ∈ M and 𝑎 : A, if 𝑚 ⊩A 𝑎 then 𝑚 ⊩B 𝑓 [𝑎/𝑥]

RelM⊗ can be given the structure of a biclosed monoidal category as follows:
• The monoidal unit is (1, {(ϵ , ⟨⟩)})

• Given (A,⊩A) and (B,⊩B), define their monoidal product as
(A ⊗ B,⊩A⊗B) where

𝑚 ⊩A⊗B 𝑝 ⇐⇒ ∃𝑛, 𝑘 ∈ M, 𝑎 : A, 𝑏 : B s.t.
𝑚 = 𝑛 ⊗ 𝑘, 𝑝 ≡A⊗B ⟨𝑎, 𝑏⟩, 𝑛 ⊩A 𝑎 and 𝑘 ⊩B 𝑏

• Given (A,⊩A) and (B,⊩B), define their left closure as (A/B,⊩A/B) where

𝑚 ⊩A/B 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A, 𝑛 ⊩A 𝑎 =⇒ 𝑛 ⊗ 𝑚 ⊩B 𝑓 (𝑎)

• And similarly for the right closure.

27/30

Substructural Categorical Relations
Fix a monoidM. Define a category RelM⊗ as follows:
• Objects are pairs (A,⊩A) where A is a type in ordered STLC and
⊩A ⊆ M × JAK
• A morphism (A,⊩A) → (B,⊩B) is a term 𝑥 : A ⊢ 𝑓 : B in ordered STLC
such that for all 𝑚 ∈ M and 𝑎 : A, if 𝑚 ⊩A 𝑎 then 𝑚 ⊩B 𝑓 [𝑎/𝑥]

RelM⊗ can be given the structure of a biclosed monoidal category as follows:
• The monoidal unit is (1, {(ϵ , ⟨⟩)})
• Given (A,⊩A) and (B,⊩B), define their monoidal product as
(A ⊗ B,⊩A⊗B) where

𝑚 ⊩A⊗B 𝑝 ⇐⇒ ∃𝑛, 𝑘 ∈ M, 𝑎 : A, 𝑏 : B s.t.
𝑚 = 𝑛 ⊗ 𝑘, 𝑝 ≡A⊗B ⟨𝑎, 𝑏⟩, 𝑛 ⊩A 𝑎 and 𝑘 ⊩B 𝑏

• Given (A,⊩A) and (B,⊩B), define their left closure as (A/B,⊩A/B) where

𝑚 ⊩A/B 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A, 𝑛 ⊩A 𝑎 =⇒ 𝑛 ⊗ 𝑚 ⊩B 𝑓 (𝑎)

• And similarly for the right closure.

27/30

Substructural Categorical Relations
Fix a monoidM. Define a category RelM⊗ as follows:
• Objects are pairs (A,⊩A) where A is a type in ordered STLC and
⊩A ⊆ M × JAK
• A morphism (A,⊩A) → (B,⊩B) is a term 𝑥 : A ⊢ 𝑓 : B in ordered STLC
such that for all 𝑚 ∈ M and 𝑎 : A, if 𝑚 ⊩A 𝑎 then 𝑚 ⊩B 𝑓 [𝑎/𝑥]

RelM⊗ can be given the structure of a biclosed monoidal category as follows:
• The monoidal unit is (1, {(ϵ , ⟨⟩)})
• Given (A,⊩A) and (B,⊩B), define their monoidal product as
(A ⊗ B,⊩A⊗B) where

𝑚 ⊩A⊗B 𝑝 ⇐⇒ ∃𝑛, 𝑘 ∈ M, 𝑎 : A, 𝑏 : B s.t.
𝑚 = 𝑛 ⊗ 𝑘, 𝑝 ≡A⊗B ⟨𝑎, 𝑏⟩, 𝑛 ⊩A 𝑎 and 𝑘 ⊩B 𝑏

• Given (A,⊩A) and (B,⊩B), define their left closure as (A/B,⊩A/B) where

𝑚 ⊩A/B 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A, 𝑛 ⊩A 𝑎 =⇒ 𝑛 ⊗ 𝑚 ⊩B 𝑓 (𝑎)

• And similarly for the right closure.

27/30

Substructural Categorical Relations
Fix a monoidM. Define a category RelM⊗ as follows:
• Objects are pairs (A,⊩A) where A is a type in ordered STLC and
⊩A ⊆ M × JAK
• A morphism (A,⊩A) → (B,⊩B) is a term 𝑥 : A ⊢ 𝑓 : B in ordered STLC
such that for all 𝑚 ∈ M and 𝑎 : A, if 𝑚 ⊩A 𝑎 then 𝑚 ⊩B 𝑓 [𝑎/𝑥]

RelM⊗ can be given the structure of a biclosed monoidal category as follows:
• The monoidal unit is (1, {(ϵ , ⟨⟩)})
• Given (A,⊩A) and (B,⊩B), define their monoidal product as
(A ⊗ B,⊩A⊗B) where

𝑚 ⊩A⊗B 𝑝 ⇐⇒ ∃𝑛, 𝑘 ∈ M, 𝑎 : A, 𝑏 : B s.t.
𝑚 = 𝑛 ⊗ 𝑘, 𝑝 ≡A⊗B ⟨𝑎, 𝑏⟩, 𝑛 ⊩A 𝑎 and 𝑘 ⊩B 𝑏

• Given (A,⊩A) and (B,⊩B), define their left closure as (A/B,⊩A/B) where

𝑚 ⊩A/B 𝑓 ⇐⇒ ∀𝑛 ∈ M, 𝑎 : A, 𝑛 ⊩A 𝑎 =⇒ 𝑛 ⊗ 𝑚 ⊩B 𝑓 (𝑎)

• And similarly for the right closure.

28/30

Adding Polymorphism

The syntactic category of System F is not really one category, but rather a
family of Cartesian Closed categories Syn[X1, . . . ,X𝑛] for each list of type
variables X1, . . . ,X𝑛. These come equipped with functors

∀X𝑛+1 : Syn[X1, . . . ,X𝑛,X𝑛+1] → Syn[X1, . . . ,X𝑛]

with a certain universal property. Moreover, this family of categories is initial
with this property.

Idea: for each X1, . . . ,X𝑛, build a Cartesian Closed category Rel[X1, . . . ,X𝑛]
following the same general procedure as for STLC/System T/etc., and then
show that there are functors ∀X𝑛+1 : Rel[X1, . . . ,X𝑛,X𝑛+1] → Rel[X1, . . . ,X𝑛]
with the requisite universal property, using the definition of logical relations
for parametrically polymorphic functions.

This procedure works just as well when we replace Cartesian Closed
categories with biclosed monoidal categories, and thus allows us to generalize
parametricity from ordinary System F to substructural variants thereof (and
even further beyond!)

28/30

Adding Polymorphism

The syntactic category of System F is not really one category, but rather a
family of Cartesian Closed categories Syn[X1, . . . ,X𝑛] for each list of type
variables X1, . . . ,X𝑛. These come equipped with functors

∀X𝑛+1 : Syn[X1, . . . ,X𝑛,X𝑛+1] → Syn[X1, . . . ,X𝑛]

with a certain universal property. Moreover, this family of categories is initial
with this property.

Idea: for each X1, . . . ,X𝑛, build a Cartesian Closed category Rel[X1, . . . ,X𝑛]
following the same general procedure as for STLC/System T/etc., and then
show that there are functors ∀X𝑛+1 : Rel[X1, . . . ,X𝑛,X𝑛+1] → Rel[X1, . . . ,X𝑛]
with the requisite universal property, using the definition of logical relations
for parametrically polymorphic functions.

This procedure works just as well when we replace Cartesian Closed
categories with biclosed monoidal categories, and thus allows us to generalize
parametricity from ordinary System F to substructural variants thereof (and
even further beyond!)

28/30

Adding Polymorphism

The syntactic category of System F is not really one category, but rather a
family of Cartesian Closed categories Syn[X1, . . . ,X𝑛] for each list of type
variables X1, . . . ,X𝑛. These come equipped with functors

∀X𝑛+1 : Syn[X1, . . . ,X𝑛,X𝑛+1] → Syn[X1, . . . ,X𝑛]

with a certain universal property. Moreover, this family of categories is initial
with this property.

Idea: for each X1, . . . ,X𝑛, build a Cartesian Closed category Rel[X1, . . . ,X𝑛]
following the same general procedure as for STLC/System T/etc., and then
show that there are functors ∀X𝑛+1 : Rel[X1, . . . ,X𝑛,X𝑛+1] → Rel[X1, . . . ,X𝑛]
with the requisite universal property, using the definition of logical relations
for parametrically polymorphic functions.

This procedure works just as well when we replace Cartesian Closed
categories with biclosed monoidal categories, and thus allows us to generalize
parametricity from ordinary System F to substructural variants thereof (and
even further beyond!)

29/30

Conclusion
Category theory provides a general and powerfully simplifying language for
logical relations. In this talk, we have seen how this method can be used to
handle logical relations and parametricity for ordered polymorphic
λ-calculus, but the applications of this method are seemingly without limit.

• By augmenting the structures of the monoidal categories and monoids
used in the above construction for ordered parametricity, we can prove
parametricity theorems for other substructrual polymorphic λ-calculi
(e.g. using symmetric monoidal categories and commutative monoids gives
parametricity for Linear System F).
• The categorical concepts of adjoint functors and monoidal adjunctions can
be used to extend logical relations and parametricity to systems of adjoint
modal substructural type theory that allow us to combine different sorts of
substructural constraints in the same type system.
• The categorical semantics of dependent type theory can be used to extend
logical relations and parametricity for systems with dependent types.

Food for thought: what makes a category behave like a “category of
relations”?

29/30

Conclusion
Category theory provides a general and powerfully simplifying language for
logical relations. In this talk, we have seen how this method can be used to
handle logical relations and parametricity for ordered polymorphic
λ-calculus, but the applications of this method are seemingly without limit.
• By augmenting the structures of the monoidal categories and monoids
used in the above construction for ordered parametricity, we can prove
parametricity theorems for other substructrual polymorphic λ-calculi
(e.g. using symmetric monoidal categories and commutative monoids gives
parametricity for Linear System F).

• The categorical concepts of adjoint functors and monoidal adjunctions can
be used to extend logical relations and parametricity to systems of adjoint
modal substructural type theory that allow us to combine different sorts of
substructural constraints in the same type system.
• The categorical semantics of dependent type theory can be used to extend
logical relations and parametricity for systems with dependent types.

Food for thought: what makes a category behave like a “category of
relations”?

29/30

Conclusion
Category theory provides a general and powerfully simplifying language for
logical relations. In this talk, we have seen how this method can be used to
handle logical relations and parametricity for ordered polymorphic
λ-calculus, but the applications of this method are seemingly without limit.
• By augmenting the structures of the monoidal categories and monoids
used in the above construction for ordered parametricity, we can prove
parametricity theorems for other substructrual polymorphic λ-calculi
(e.g. using symmetric monoidal categories and commutative monoids gives
parametricity for Linear System F).
• The categorical concepts of adjoint functors and monoidal adjunctions can
be used to extend logical relations and parametricity to systems of adjoint
modal substructural type theory that allow us to combine different sorts of
substructural constraints in the same type system.

• The categorical semantics of dependent type theory can be used to extend
logical relations and parametricity for systems with dependent types.

Food for thought: what makes a category behave like a “category of
relations”?

29/30

Conclusion
Category theory provides a general and powerfully simplifying language for
logical relations. In this talk, we have seen how this method can be used to
handle logical relations and parametricity for ordered polymorphic
λ-calculus, but the applications of this method are seemingly without limit.
• By augmenting the structures of the monoidal categories and monoids
used in the above construction for ordered parametricity, we can prove
parametricity theorems for other substructrual polymorphic λ-calculi
(e.g. using symmetric monoidal categories and commutative monoids gives
parametricity for Linear System F).
• The categorical concepts of adjoint functors and monoidal adjunctions can
be used to extend logical relations and parametricity to systems of adjoint
modal substructural type theory that allow us to combine different sorts of
substructural constraints in the same type system.
• The categorical semantics of dependent type theory can be used to extend
logical relations and parametricity for systems with dependent types.

Food for thought: what makes a category behave like a “category of
relations”?

29/30

Conclusion
Category theory provides a general and powerfully simplifying language for
logical relations. In this talk, we have seen how this method can be used to
handle logical relations and parametricity for ordered polymorphic
λ-calculus, but the applications of this method are seemingly without limit.
• By augmenting the structures of the monoidal categories and monoids
used in the above construction for ordered parametricity, we can prove
parametricity theorems for other substructrual polymorphic λ-calculi
(e.g. using symmetric monoidal categories and commutative monoids gives
parametricity for Linear System F).
• The categorical concepts of adjoint functors and monoidal adjunctions can
be used to extend logical relations and parametricity to systems of adjoint
modal substructural type theory that allow us to combine different sorts of
substructural constraints in the same type system.
• The categorical semantics of dependent type theory can be used to extend
logical relations and parametricity for systems with dependent types.

Food for thought: what makes a category behave like a “category of
relations”?

30/30

9NAB8 Thank you! 8CAM:

	Part 1: The What
	Part 1: The How

